[スポンサーリンク]

一般的な話題

クロスカップリング用Pd触媒 小ネタあれこれ

[スポンサーリンク]

am

 

有機化学者の必須ツール「クロスカップリング用  Pd触媒」について、いくつか小ネタが溜まってきたので、ここらでまとめて晒しておきます。

*筆者は単なる反応ユーザーであって、クロスカップリング反応や触媒のプロではありません。また、人から聞いた話を並べるだけで、自分で裏付け確認して無いことばかり書きます。間違ってても許してね。

やっぱ基本はテトラキス?

tetrakis.png

昔からよく使われている触媒 Pd(PPh3)4、通称「テトラキス」。最近の動向では「e-richなリガンドをもつ触媒が高活性だ」という事になってますが、経験的には色々検討し たけどテトラキスでのみ目的物得られた、なんて事もあるので、検討項目には入れといた方が良いでしょう。

こいつの弱点は、温度/酸素への 安定性に乏しく、試薬瓶の蓋の開け閉めに伴って瓶中に混入する酸素によって徐々に分解し、明るい黄色⇒オレンジ⇒茶色⇒灰色と変色して活性を失います(オ レンジ超えたら使いたくないですねぇ)。噂では、UVランプの長波長当てて、キラキラ光れば活性ありだとか… 私は試薬購入したらば全量をナスフラスコに移し窒素置換し冷凍庫に放り込んじゃいます。

やったことなくて恐縮ですが、合成は簡単みたいです(こちらのブログに写真あり)
1. 塩化パラジウム(Ⅱ)とトリフェニルホスフィンをDMSO溶媒中でかき混ぜる
2. ヒドラジンを入れる
3. 固体をろ過 ⇒ DMSOを洗い減圧乾燥

さらにこちらのブログには ” I will never really understand why people bother to buy “ とまで書かれてます!(そんな事言っても、つくった事ないから買っちゃうんだよねぇ…)

 

Pd2(dba)3:安定なパラジウムソース ??

pddba.png

Pd とリガンドを別々に入れる際に使うPdソースは、Pd2(dba)3とPd(OAc)2とが代表選手でしょうかね?

通称「ディービーエー」。こいつには色々亜流があって混乱しますね:Pd2(dba)3, Pd(dba)2, Pd2(dba)3,-CHCl3, Pd2(dba)3,-n(dba), etc… ところが、この亜流には意味は無いようです!?

Pd触媒製造の世界的メーカーの方に話を聞いたのですが「Pd2(dba)3と Pd(dba)2はどちらも嘘で、Pd に対してもっと過剰にdbaが無いと錯形成せずにPd black で沈殿してしまう。どれもPd2(dba)3-n(dba)が正しい」です。 更には「試薬の中のPdがどれだけ錯形成していて、どれだけ Pd blackが混じってるか解らない。製法によるからサプライヤーによって違うハズ」だそーで、マジすか!?今まで信じてたのに…

Pd2(dba)3,-CHCl3(クロロホルム錯体)だけが、きちんと量論比に従った均一の錯形成をするそうです。そういえば、大昔に先輩から「室温でクロロホルムが飛んじゃうから冷蔵保存する」と言われたんですが、、、ホント???

 

Buchwald リガンド & follwers

buchwaldligand.png

Buchwaldらは Xphos等のdialkylbiaryl phosphineがPdクロスカップリングの良いリガンドになる事を見いだしており、これらは通称 Buchwald リガンド と呼ばれます。

有名どころは、JohnPhos, SPhos, XPhos, DavePhos, RuPhos, BrettPhosといった所でしょうか?(AldrichのHPにまとめられています)。やっぱ気になるのがその名前ですよね。

MIT に留学していた方に聞いたところ「あれはリガンドを合成した学生の名前。僕はJohnもBurettも知ってる」とのことです。リガンドに自分の名前が付いて世界中で使われるとなれば、研究者冥利につきますね!そうやってラボメンバーのモチベーションを上げるのが Buchwald のマネジメント手法のようです。

Buchwaldグループ以外から、特に企業からのBuchwald型リガンド(似て非なるリガンド)の研究報告も目に付きます。Buchwaldリガン ドはMITの特許があるため、研究目的外の「生産」段階ではライセンス料を支払う必要が出てくるので、特許クレーム外のリガンドを研究する必要があるそう です。そうしてfollowersが生まれる訳です。(同様の事例は、不斉水素化での野依触媒、オレフィンメタセシスでのGrubbs触媒の特許抜け followersでもよく見られます。)

 

Fuリガンドの最近

fuPtBu3.png

おそらく最強の電子供与性をもつ trialkyl phosphine、 通称「Fuリガンド」ですが、PtBu3は酸素に不安定で速やかに酸化されてしまうため、窒素下での秤量・溶存酸素の厳密なケアが必要となり、なかなか使い難いリガンドでした。というか、私の雑な実験では、うまく反応がいった試しがありません。

最も不安定なのは trialkyl phosphine 単体状態であり、錯体となれば安定性が増します。そこで最近ではtrialkyl phosphine そのものを秤量するのではなく、

  1. Tri-tert-butylphosphonium Tetrafluoroborate を中和して系中発生させる
  2. Bis(tri-tert-butylphosphine)palladium(0) 錯体を始めから用いる

の2つの方法が汎用され、安定した反応仕込みが達成されています。

 

PdCl2(dppf) & followers

pdcldppf.png

PdCl2(dppf)は安定・優秀なクロスカップリング触媒で、私は鈴木・宮浦カップリングを行う時の第一選択にしています。論文にも頻出しますね。

ですが、反応性の乏しい基質では、より電子供与性の高いリガンドが欲しくなるところ。そこで最近流行りつつあるのが ” dtbpf ” と “ Amphos” です。Amphosは、Amgen社のケミストにより生み出されたリガンドですが、彼らは特許出願をしなかったので、その優れた活性と併せて権利的にも使い易い触媒となっています。

【追記】ちなみに現在(2014年12月)では関東化学の価格が最も安価でおすすめです。定価 1g ¥9,000 5g ¥ 30,000 詳細はこちら

どちらも電子供与性の高い tBu基を有し高活性でありつつも、高い安定性も併せ持ち、空気中での秤量・室温保存を可能としています。思った以上に使い易いので、これからカップリング触媒の第一選択にしよっかな?

NHCリガンド

nhcmetalcomplex.png

Grubbs Ru触媒で大輪の花を咲かせた NHC リガンドが、 クロスカップリングPd触媒においても展開をみせはじめております。PEPPSIumicore社触媒など種々市販されています。

特徴としては反応活性が高いという点はもちろんですが、最大の特徴は「触媒の堅牢性が高い事」にあるようです。他の触媒と異なり、NHCリガンド錯体は反応終了後も錯体状態を保つそうで、

  1. 分液すると錯体のまま有機相にいく (Pd blackは出てこない)
  2. 有機溶媒によく溶けるので、再結晶で除ける
  3. シリカ/アルミナ等の濾過で原点に保持される (テーリングして目的物に混入しない)

等の特徴を有しており、結果として目的物との分離に優れるそうです。医薬品を始めとする生物活性物質の合成には、最終生成物へのPd混入量は低レベルに規定する必要があるので、分離良好なNHC錯体は今後ますます流行るような気がします。

 

 

以上、最近仕入れたPdネタ集でした。その他に面白いネタがあれば教えてください!

 

関連記事

 

関連リンク

関連記事

  1. 電池で空を飛ぶ
  2. 第46回ケムステVシンポ「メゾヒエラルキーの物質科学」を開催しま…
  3. ここまでできる!?「DNA折り紙」の最先端 ② ~巨大な平面構造…
  4. 免疫/アレルギーーChemical Times特集より
  5. 世界初のジアゾフリーキラル銀カルベン発生法の開発と活性化されてい…
  6. 【追悼企画】世のためになる有機合成化学ー松井正直教授
  7. 湿度変化で発電する
  8. クロスメタセシスによる三置換アリルアルコール類の合成

注目情報

ピックアップ記事

  1. Igor Larrosa イゴール・ラロッサ
  2. 液体キセノン検出器
  3. 人羅勇気 Yuki HITORA
  4. 常圧核還元(水添)触媒 Rh-Pt/(DMPSi-Al2O3)
  5. フラッシュ精製装置「バイオタージSelect」を試してみた
  6. ノーベル化学賞 Nobel Prize in Chemistry
  7. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Part I
  8. ラスカー賞に遠藤章・東京農工大特別栄誉教授
  9. 「サリドマイド」投与医師の3割が指針”違反”
  10. ロジャー・コーンバーグ Roger Kornberg

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年11月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー