[スポンサーリンク]

一般的な話題

肝はメチル基!? ロルカセリン

[スポンサーリンク]

 ケムステニュースに取り上げましたが、Arena Pharmaceuticalsが創成し、エーザイ株式会社が販売権をもつ抗肥満薬 「BELVIQ®」 (一般名lorcaserin hydrochloride)が2012年6月27日にFDA承認を取得しました。安全性確認のための追加試験が行われるようですが、「国民の2/3が肥満」と言われる米国においては13年振りの抗肥満薬であり、まさに待望の新薬なのでしょう。

対象となる患者は、BMIが30kg/m2以上が対象なので、身長170cmで体重>87kgですね。ネット上では早くも 「痩せ薬キタ━(゚∀゚)━!」 「これでダイエット不要に!」と言う声も出ていますが、「臨床試験成績は平均で年間3~3・7%の体重減少」という事なので、ダイエットできる人ならそっちの方が早そうですね。

創薬の経緯を少し調べてみたんですが、見出し絵の通り、ロルカセリンの成否はメチル基1つだったのか!? とビックリしたので記事にします。(ケムステニュースには私見を込めたくないので、記事を切り分けました)

 

5-HT2CターゲットとArena の戦略

セロトニン (5-ヒドロキシトリプタミン、5-HT)は、中枢作用、および血圧/体温調節等の末梢作用などの様々な生理学的機能を有する神経伝達物質です。セロトニンの受容体は、現在までに 14 種類が報告されていて、5-HT1Aアゴニスト、5-HT1D/1Bアゴニスト、5-HT4アゴニスト、5-HT3アンタゴニスト等が臨床使用されています。セロトニン受容体の一つである5-HT2C受容体は中枢系に広く分布し、摂食、性機能、社会的相互作用への関与が示唆されている受容体であり、創薬ターゲットとして注目されていました。しかしながら、同じサブファミリーに属する5-HT2A及び5-HT2Bと受容体構造が近いため選択性を得る事が難しい点が5-HT2Cアゴニスト創薬の課題でした。

Arena Pharma.の研究者達は、既存の非選択的アゴニストであるセロトニン、ノルフェンフルラミン、Ro 60-0175の共通部分構造であるarylethylamineに着目し、環化による配座固定化を行っています。即ち、分子が取りうるコンフォメーションを減らす事で、各受容体への親和性に差が生じる事を期待しました。その結果、(恐らく色々トライしたのでしょうが) 1-methyl-3-benzazepine構造が5-HT2C選択性を有する事を見出して、Lorcaserinの創薬に成功しています。

Lorcaserin Arena.gif

 2004年11月及び2007年7月に論文が受理されています。論文データによると5HT2C活性はEC50=7.9nMであり、5HT2A / 5HT2Bに対しそれぞれ20倍 / 100倍の選択性を有してます。私見ですが、1位メチル基は「選択性を狙って入れた」んじゃなくて、「有った方が合成が楽だから入れてみた」ように見えるんですが、如何でしょうか?

Lorcaserin Synth.gif

 

Astellasの戦略

Astellasは、Ro 60-0175をリード化合物として候補化合物YM348を創出し、臨床試験に進めていました。しかし、副作用発現が懸念された事から、より優れたバックアップ化合物が必要となました。

YM348.gif

  2007年11月受理 (Arena社2報目と同時期) の論文で、バックアップ研究が報告されています。彼らは、新たな骨格を有するリードを得るためにHTSを行いました。HTSのヒット化合物からの最適研究を行いましたが、結果として得られた物はロルカセリンと極めて構造が類似する6,7-置換-3-benzazepineでした。論文データによると5HT2C活性はKi=8.8nMであり、5HT2A / 5HT2Bに対しそれぞれ11倍 / 11倍の選択性を有してます。Lorcaserin YM.gif

論文データ上ではロルカセリンの選択性には及ばないです。幸か不幸か、YM348の臨床試験が続行したため、この化合物の開発は進んでいないようです。

 

メチル基は果たして “What to Make?” の産物なのか??

活性値や選択性のデータは、施設間で異なった数字になる事は良くあるので、実際にどちらの化合物が優れているのかは論文からでは判断できませんし、論文で書かれていない薬物動態や毒性のデータも不明です。更に、たとえ同じ化合物/データを持っていても、臨床のGo/No Go判断は組織によって異なります(ビジネス判断の要因が絡む)。
そういった種々の要因を敢えて無視して、論文データだけを比較すると「メチル基の有無」が創薬成功の成否を握っているようにも見えてしまいます。さて、このメチル基は果たして、狙って入れたものでしょうか?論文中、彼らは「配座固定化のために環化した」としか言ってないので、「兎も角、早く環化体創りたいから、メチル基入っちゃうルートで良いや!」と思って創ったんだと、私は想像します。よく創薬化学は「How to Make?ではなくてWhat to Make?だ!」と言われるんですが、考え抜いて創った物がイマイチな結果で、あれこれ考えずに早く創った物が勝ちな時もままあります。ロルカセリンの創薬成功は、その好例ではないかと思いました。

教訓 : 考えるより産むが易し(の時もある)

補足:「How to make?」で気になるキラル体合成法は、特許明細書(WO2008070111)を見る限り、不斉合成では無くて L-(+)-tartaric acidを用いたジアステレオ塩の光学分割を行なっているようです。

 

関連記事

* ケムステニュース:Arena/エーザイ 抗肥満薬ロルカセリンがFDA承認取得

 

関連論文

  1. * Discovery and SAR of new benzazepines as potent and selective 5-HT 2C receptor agonists for the treatment of obesity Bioorg. Med. Chem. Lett. 15 (2005) 1467–1470
  2. Discovery and Structure−Activity Relationship of (1R)-8-Chloro-2,3,4,5-tetrahydro-1-methyl-1H-3-benzazepine (Lorcaserin), a Selective Serotonin 5-HT2C Receptor Agonist for the Treatment of Obesity J. Med. Chem., 2008, 51 (2), pp 305–313 DOI: 10.1021/jm0709034
  3. Synthesis and structure–activity relationships of a series of benzazepine derivatives as 5-HT2C receptor agonists Bioorganic & Medicinal Chemistry 16 (2008) 3309–3320

 

関連サイト

 

関連記事

  1. 「人工タンパク質ケージを操る」スイス連邦工科大学チューリヒ校・H…
  2. 亜鉛挿入反応へのLi塩の効果
  3. フラーレンの単官能基化
  4. 日本薬学会第144年会 (横浜) に参加してきました
  5. 環拡大で八員環をバッチリ攻略! pleuromutilinの全合…
  6. 2つの触媒と光エネルギーで未踏の化学反応を実現: 芳香族化合物の…
  7. ケムステの記事が3650記事に到達!
  8. 「医薬品クライシス」を読みました。

注目情報

ピックアップ記事

  1. 無保護カルボン酸のラジカル機構による触媒的酸化反応の開発
  2. 昭和電工、青色LEDに参入
  3. ESI-MSの開発者、John B. Fenn氏 逝去
  4. サイエンスイングリッシュキャンプin東京工科大学
  5. 第20回 超分子から高分子へアプローチする ― Stuart Rowan教授
  6. アメリカ企業研究員の生活①:1日の仕事の流れ
  7. 【金はなぜ金色なの?】 相対論効果 Relativistic Effects
  8. 第142回―「『理想の有機合成』を目指した反応開発と合成研究」山口潤一郎 教授
  9. ~祭りの後に~ アゴラ企画:有機合成化学カードゲーム【遊機王】
  10. 多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年7月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー