[スポンサーリンク]

一般的な話題

進化する電子顕微鏡(TEM)

[スポンサーリンク]

“化学者は分子、原子レベルで世界を見ることが出来る人のことである”

といつかのセミナーで聞いたことがあって以来、僕はこの言葉をなかなか良い言葉だなぁと思って心に留めています。

普通の人がそのものとしてみている、“洗剤”や“料理などのプロセス”や“医薬”を分子レベルの動きとして“見る”、そんなパラダイムを胸に化学者は研究している気がします。

ただし、化学を勉強していない人が、そういった「見かた」をするのに、ちょっと勉強が必要になるのも事実です。

しかし!そんな勉強をする必要なく、分子、原子レベルで物を「見る」ことが出来るのです。そんな魔法の装置、それが「電子顕微鏡」、特に今回は近年発展の目覚しい「透過型電子顕微鏡、TEM」を紹介したいと思います。

「もの」というのはある程度小さくなると見えなくなります。そこで人はメガネをかけます。それよりも小さくなると人は顕微鏡を使います。しかし小学校で使うような一般的な顕微鏡(*1)はいくら頑張っても100ナノメートルオーダーのものしか理論的に観察することができません。光の波長の制限があるからです。

そこで光を使わない色々な顕微鏡が登場します。AFM、STM、SEM(*2)など様々な顕微鏡が提唱されていますが、ここでは透過型電子顕微鏡(Transmission Electron Microscope)、通称TEMを紹介させて頂きます。

TEM1.jpg

TEMの原理は写し絵と同じです。違いは、写し絵は光を当てて影を観察しますが、TEMでは電子ビームをあてて、その影を観察します。

電子ビームのいいところは光と比べて、波長が短く、そのぶん分解能が良くなるというところです。

つまり「光」を使うと非常に画素の荒いモザイクにしかならないものを、「電子」を使うとほぼ極限までその画素を小さくできて、結果非常に綺麗に物が移るということです。

こーゆー顕微鏡はナノテクノロジーの素材を扱う分野で日常的に使われています。

TEM2.jpg

図1:一般的な TEMの画像(ナノロッド)

 

ではどの程度の画素までみえるかというと、金属や半導体であれば、その結晶の原子配列まで綺麗にみえるのです。

但し、従来のTEMで見られる格子は、その格子を通り抜けた、電子の干渉縞として観察されるもので、直接的な電子の投影としての絵ではなく、そのため、厳密に“原子の並び”を観察することは今まで出来ませんでした。

そこでカルフォルニア州バークレーにあるのLawrence Berkeley National Laboratoryはより高解像度を求めた電子顕微鏡、その名もTransmission Electron Aberration-Corrected Microscope (TEAM) (和訳は分かりませんが、「収差補正つきTEM」みたいな感じでしょうか)に着手し2009年に従来の目標であった0.05nmの解析度を達成しました。この大きさがどれだけ凄いものかといいますと、水素の大きさの約半分でありますので、主にTEMの守備範囲である遷移金属の原子レベルの大きさは観察できるということです。

TEM3.jpg

図2:Lawrence Berkeley National LaboratoryのTEAMの画像

TEMの発展は、Resolutionだけでなく、In situなどの観測も出来るようになっており、そのどれもが素晴らしいので、機会があればまた紹介したいです。

その中で1つごく最近報告された技術を紹介します。この報告ではサンプルを傾けた写真を複数枚とることにより、そのサンプルを立体的に捉え、映像化するという技術がNatureに報告されました。

TEM4.png

図3:金ナノ粒子の3D映像( Nature 2012 doi:10.1038/nature10934より抜粋)

今まで見えなかった世界がこのように技術の発展により、どんどん「見えて」きています。個人的にはこういう技術は直接的な感覚に訴えるので、門外漢の人にも受け入れられやすくて、とってもポップで素晴らしいと思います。

先で述べた、分子原子レベルでの物の見方をするのの入り口としては最適な道具なのではないのでしょうか?

(こーゆー考え方は一度体得してしまえば、コロンブスの卵みたいなもので簡単です。そしてそーゆー見方をすれば新しいものの出来方ができて楽しいよ、みたいなのを伝えたいのがケムステ的な場で文章を書くモチベーションになったりしています。。)

これまで「見えなかった」と思っているものがみえる。これこそ、「新たな世界に光がさした」状態だし、世界の広がりではないでしょうか?しかしこの先がどこで何が見えるようになるかわかりません。いまだに「見えていない」ものが「見える」ようになる未来があるかもしれないのですよ。

(*1)光学顕微鏡を指す。

(*2)それぞれAFM:Atomic Force Microscope、STM: Scanning Tunnel、SEM: Scanning Electron Microscopeのこと。

参考

(1)The TEAM Project http://ncem.lbl.gov/TEAM-project/index.html

(2)”Electron tomography at 2.4-ångström resolution”; Jianwei Miao et al. Nature 2012 doi:10.1038/nature10934

やすたか

投稿者の記事一覧

米国で博士課程学生

関連記事

  1. お”カネ”持ちな会社たち-1
  2. つぶれにくく元にも戻せる多孔性結晶の開発
  3. アメリカ大学院留学:卒業後の進路とインダストリー就活(3)
  4. 蒸発面の傾きで固体膜のできかたが変わる-分散液乾燥による固体膜成…
  5. マンガン触媒による飽和炭化水素の直接アジド化
  6. カーボンナノベルト合成初成功の舞台裏 (1)
  7. 金属材料・セラミックス材料領域におけるマテリアルズ・インフォマテ…
  8. ハーバート・ブラウン―クロスカップリングを導いた師とその偉業

注目情報

ピックアップ記事

  1. 化学研究ライフハック: Evernoteで論文PDFを一元管理!
  2. カーボンナノチューブを有機色素で染めて使う新しい光触媒技術
  3. “へぇー、こんなシンプルにできるんだっ!?”四級アンモニウム塩を触媒とするアルキンのヒドロシリル化反応
  4. 第47回ケムステVシンポ「マイクロフローケミストリー」を開催します!
  5. 菅沢反応 Sugasawa Reaction
  6. 反応がうまくいかないときは冷やしてみてはいかが?
  7. 第83回―「新たな電池材料のモデリングと固体化学」Saiful Islam教授
  8. 2004年ノーベル化学賞『ユビキチン―プロテアソーム系の発見』
  9. 最近の有機化学注目論文3
  10. 論文・学会発表に役立つ! 研究者のためのIllustrator素材集: 素材アレンジで描画とデザインをマスターしよう!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年6月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

【無料ウェビナー】粒子分散の最前線~評価法から処理技術まで徹底解説~(三洋貿易株式会社)

1.ウェビナー概要2025年2月26日から28日までの3日間にわたり開催される三…

第18回日本化学連合シンポジウム「社会実装を実現する化学人材創出における新たな視点」

日本化学連合ではシンポジウムを毎年2回開催しています。そのうち2025年3月4日開催のシンポジウムで…

理研の一般公開に参加してみた

bergです。去る2024年11月16日(土)、横浜市鶴見区にある、理化学研究所横浜キャンパスの一般…

ツルツルアミノ酸にオレフィンを!脂肪族アミノ酸の脱水素化反応

脂肪族アミノ酸側鎖の脱水素化反応が報告された。本反応で得られるデヒドロアミノ酸は多様な非標準アミノ酸…

野々山 貴行 Takayuki NONOYAMA

野々山 貴行 (NONOYAMA Takayuki)は、高分子材料科学、ゲル、ソフトマテリアル、ソフ…

城﨑 由紀 Yuki SHIROSAKI

城﨑 由紀(Yuki SHIROSAKI)は、生体無機材料を専門とする日本の化学者である。2025年…

中村 真紀 Maki NAKAMURA

中村真紀(Maki NAKAMURA 産業技術総合研究所)は、日本の化学者である。産業技術総合研究所…

フッ素が実現する高効率なレアメタルフリー水電解酸素生成触媒

第638回のスポットライトリサーチは、東京工業大学(現 東京科学大学) 理学院化学系 (前田研究室)…

【四国化成ホールディングス】新卒採用情報(2026卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

マイクロ波に少しでもご興味のある方へ まるっとマイクロ波セミナー 〜マイクロ波技術の基本からできることまで〜

プロセスの脱炭素化及び効率化のキーテクノロジーとして注目されている、電子レンジでおなじみの”マイクロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー