[スポンサーリンク]

一般的な話題

進化する電子顕微鏡(TEM)

[スポンサーリンク]

“化学者は分子、原子レベルで世界を見ることが出来る人のことである”

といつかのセミナーで聞いたことがあって以来、僕はこの言葉をなかなか良い言葉だなぁと思って心に留めています。

普通の人がそのものとしてみている、“洗剤”や“料理などのプロセス”や“医薬”を分子レベルの動きとして“見る”、そんなパラダイムを胸に化学者は研究している気がします。

ただし、化学を勉強していない人が、そういった「見かた」をするのに、ちょっと勉強が必要になるのも事実です。

しかし!そんな勉強をする必要なく、分子、原子レベルで物を「見る」ことが出来るのです。そんな魔法の装置、それが「電子顕微鏡」、特に今回は近年発展の目覚しい「透過型電子顕微鏡、TEM」を紹介したいと思います。

「もの」というのはある程度小さくなると見えなくなります。そこで人はメガネをかけます。それよりも小さくなると人は顕微鏡を使います。しかし小学校で使うような一般的な顕微鏡(*1)はいくら頑張っても100ナノメートルオーダーのものしか理論的に観察することができません。光の波長の制限があるからです。

そこで光を使わない色々な顕微鏡が登場します。AFM、STM、SEM(*2)など様々な顕微鏡が提唱されていますが、ここでは透過型電子顕微鏡(Transmission Electron Microscope)、通称TEMを紹介させて頂きます。

TEM1.jpg

TEMの原理は写し絵と同じです。違いは、写し絵は光を当てて影を観察しますが、TEMでは電子ビームをあてて、その影を観察します。

電子ビームのいいところは光と比べて、波長が短く、そのぶん分解能が良くなるというところです。

つまり「光」を使うと非常に画素の荒いモザイクにしかならないものを、「電子」を使うとほぼ極限までその画素を小さくできて、結果非常に綺麗に物が移るということです。

こーゆー顕微鏡はナノテクノロジーの素材を扱う分野で日常的に使われています。

TEM2.jpg

図1:一般的な TEMの画像(ナノロッド)

 

ではどの程度の画素までみえるかというと、金属や半導体であれば、その結晶の原子配列まで綺麗にみえるのです。

但し、従来のTEMで見られる格子は、その格子を通り抜けた、電子の干渉縞として観察されるもので、直接的な電子の投影としての絵ではなく、そのため、厳密に“原子の並び”を観察することは今まで出来ませんでした。

そこでカルフォルニア州バークレーにあるのLawrence Berkeley National Laboratoryはより高解像度を求めた電子顕微鏡、その名もTransmission Electron Aberration-Corrected Microscope (TEAM) (和訳は分かりませんが、「収差補正つきTEM」みたいな感じでしょうか)に着手し2009年に従来の目標であった0.05nmの解析度を達成しました。この大きさがどれだけ凄いものかといいますと、水素の大きさの約半分でありますので、主にTEMの守備範囲である遷移金属の原子レベルの大きさは観察できるということです。

TEM3.jpg

図2:Lawrence Berkeley National LaboratoryのTEAMの画像

TEMの発展は、Resolutionだけでなく、In situなどの観測も出来るようになっており、そのどれもが素晴らしいので、機会があればまた紹介したいです。

その中で1つごく最近報告された技術を紹介します。この報告ではサンプルを傾けた写真を複数枚とることにより、そのサンプルを立体的に捉え、映像化するという技術がNatureに報告されました。

TEM4.png

図3:金ナノ粒子の3D映像( Nature 2012 doi:10.1038/nature10934より抜粋)

今まで見えなかった世界がこのように技術の発展により、どんどん「見えて」きています。個人的にはこういう技術は直接的な感覚に訴えるので、門外漢の人にも受け入れられやすくて、とってもポップで素晴らしいと思います。

先で述べた、分子原子レベルでの物の見方をするのの入り口としては最適な道具なのではないのでしょうか?

(こーゆー考え方は一度体得してしまえば、コロンブスの卵みたいなもので簡単です。そしてそーゆー見方をすれば新しいものの出来方ができて楽しいよ、みたいなのを伝えたいのがケムステ的な場で文章を書くモチベーションになったりしています。。)

これまで「見えなかった」と思っているものがみえる。これこそ、「新たな世界に光がさした」状態だし、世界の広がりではないでしょうか?しかしこの先がどこで何が見えるようになるかわかりません。いまだに「見えていない」ものが「見える」ようになる未来があるかもしれないのですよ。

(*1)光学顕微鏡を指す。

(*2)それぞれAFM:Atomic Force Microscope、STM: Scanning Tunnel、SEM: Scanning Electron Microscopeのこと。

参考

(1)The TEAM Project http://ncem.lbl.gov/TEAM-project/index.html

(2)”Electron tomography at 2.4-ångström resolution”; Jianwei Miao et al. Nature 2012 doi:10.1038/nature10934

やすたか

投稿者の記事一覧

米国で博士課程学生

関連記事

  1. 人と人との「結合」を「活性化」する
  2. 2010年イグノーベル賞決定!
  3. 2016年JACS Most Read Articles Top…
  4. 光刺激で超分子ポリマーのらせんを反転させる
  5. 3つのラジカルを自由自在!アルケンのアリール-アルキル化反応
  6. 激レア!?アジドを含む医薬品 〜世界初の抗HIV薬を中心に〜
  7. マテリアルズ・インフォマティクスにおける従来の実験計画法とベイズ…
  8. 実験ノートの字について

注目情報

ピックアップ記事

  1. 革新的医薬品の科学 薬理・薬物動態・代謝・安全性から合成まで
  2. 合成化学者のための固体DNP-NMR
  3. 生体共役反応 Bioconjugation
  4. 海底にレアアース資源!ランタノイドは太平洋の夢を見るか
  5. 竜田 邦明 Kuniaki Tatsuta
  6. カルベン転移反応 ~フラスコ内での反応を生体内へ~
  7. 史上最も不運な化学者?
  8. バイオマスからブタジエンを生成する新技術を共同開発
  9. 【速報】ノーベル化学賞2013は「分子動力学シミュレーション」に!
  10. TSMCを支える化学企業

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年6月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP