[スポンサーリンク]

化学者のつぶやき

B≡B Triple Bond

[スポンサーリンク]

近年、ますます発展しているホウ素化学分野。その美しい有機ホウ素分子群の中に、また新たな化合物が加わりました。

アセチレン(-C≡C-)や窒素(:N≡N:)分子には三重結合が存在しますが、同周期の13族元素ホウ素では、多重結合を持つ安定な化合物の例が限られていました。

その理由は至ってシンプルで、ホウ素原子には価電子(他の原子と結合するための手)が3つしかないので、炭素や窒素原子のような結合様式では、ホウ素原子周りがオクテット則(計8電子でハッピー)を満たさない電子状態になってしまうため(下図)。

rk061712-1.gif

そこで、ホウ素を含む多重結合化合物を合成する為には、金属(M)で還元して電子を加えてあげる、という方法がこれまでの主流でした(下図)[1]。

 

rk061712-2.gif
一方、中性分子として多重結合を持つ様々なホウ素化合物も数例報告されており、これらはルイス塩基や溶媒、隣接するヘテロ原子上からの電子供与によって安定化されています(下図)[2]。

 

rk061712-3.gif

また興味深い特例ですが、二つのB-H-B部位を持つバタフライ型ホウ素化合物の中心ホウ素間に三重結合性があるという報告が、理研の玉尾先生らのグループによって2010年に発表されています[3]。

rk061712-4.gif
さらに2010年には、初めてB≡O三重結合を持つ化合物の合成が報告されました(過去のつぶやき )。

 

rk061712-5.gif

そして、先日、ついに、ホウ素-ホウ素三重結合を持つ化合物「ジボリン」の合成・単離に成功したという論文がScience誌に報告されていたので紹介したいと思います。

Holger Braunschweig,* Rian D. Dewhurst, Kai Hammond, Jan Mies, Krzysztof Radacki, Alfredo Vargas Science 2012, 336, 1420;DOI: DOI: 10.1126/science.1221138.

ドイツのHolger Braunschweigらグループ[4]は、二つのN-ヘテロ環状カルベン(NHC)が配位した四臭化ジボラン 1とナトリウムナフタレンの反応により、BB三重結合を持つジボリン 3の合成に成功しています(下図)。また還元剤の当量を制御することで、ジブロモジボレン 2の単離にも成功しています。
rk061712-6.gif

 

rk061712-7.gif

以下、少しだけ細かい点を挙げます
———————————————————————————————————-
1234℃まで安定な、緑色結晶
炭素アセチレン類がほぼ無色なのに対してジボリン 3が緑色を示すのは、π-π*遷移に帰属される吸収波長を510 nmに持つため。カルベン炭素と相互作用してLUMOの準位が下がっていることが一因のよう。

2)二つのホウ素原子の酸化数は 0(ZERO)。これは世界初!

3)B≡B三重結合長は、1.449 Å。もちろん世界最短!化合物 2の二重結合長と比べ、6%程度短い。固体IR測定にてB≡B伸縮振動→1339cm-1

4)NHC-B-B-NHCは少し曲がっているが、ほぼ直線構造(173°)。

5)ホウ素NMRはそれぞれ1 = -4.8 ppm, 2 = 20 ppm, 3 = 39 ppm。配位数の低下に伴い低磁場シフトしている模様(炭素アセチレンのような環電流効果はみられないのでしょうか)。

6)炭素と異なり、二つのπ軌道は縮退していない

 

とまぁ、ざっくり特徴はこんな感じでしょうか。

また、論文中ではさらりと書いてありますが、13を混ぜることでも2が得られるという反応も、とても興味深い。

 

[その他の雑感]

(1)Robinsonはめちゃめちゃ惜しかった!
上述の通り、全く同じNHCを用いてB≡B化合物の合成に挑戦し、ジヒドロジボレンが得られることを2007年に報告していた[2a]。
如何に中間体(ホウ素ラジカル種?)が不安定か、その二量化過程が遅いか、と、そしてできてしまえばB-B結合はかなり安定であることを示していると思います。
(2)カルベンすげぇ(参照:過去のつぶやき)。
遷移金属錯体、有機触媒などいろんな分野で応用されていますが、あたらためて、カルベンの導入によって開かれた化学の多さに関心します。

(3)このグループはAuthorshipがいつもアルファベット順なので、実際はどの著者の手によって作られたのか解りません。そしてボスの頭文字は「B」。無敵![5]。
———————————————————————————————————-

NHC:→B相互作用に対応する分子軌道はもっとエネルギー準位の低いところにあることでしょう。この配位の強さが分子全体の安定化にどの程度効いているのか解りませんが、分子軌道を見る限り、三重結合に関与している二つのπ結合性軌道にカルベンからの作用はほとんどなし。
なので、カルベン以外の配位子でも、立体保護とある程度の配位力があれば、同様のアプローチでBB三重結合が合成できるかもしれません。実際、低温下マトリックス中では、OC:→B≡B←:COなる化合物が2002年に観測されています[6]。

いろんな配位子を持つBB三重結合だけではなく、中性化合物としてのAl≡Alや、B≡C、B≡Nを持つ化合物も近い将来間違いなく合成されることでしょう。

 

教科書が変わりますね。
この成果がヘテロ元素化学に与えるインパクトは、ものすごく大きいことと思います。

ホウ素、熱い!

 

関連文献

[1] Selected
(a) H. Klusik, A. Berndt, Angew. Chem. Int. Ed. Engl. 1981, 20, 870. DOI: 10.1002/anie.198108701.
(b) A. Moezzi, R. A. Bartlett, P. P. Power, Angew. Chem. Int. Ed. Engl. 1992, 31, 1082. DOI: 10.1002/anie.199210821.
(c) C.-W. Chiu, F.?P. Gabbaï, Angew. Chem. Int. Ed. Engl. 2007, 46, 6878. DOI: 10.1002/anie.200702299.
(d) C.-W. Chiu, F.?P. Gabbaï, Angew. Chem. Int. Ed. Engl. 2007, 46, 1723. DOI: 10.1002/anie.200604119.[2] Selected
(a) G. H. Robinson etal., J. Am. Chem. Soc., 2007, 129, 12412, DOI:10.1021/ja075932i.
(b) G. Bertrand etal., Science 2011, 333, 610, DOI: 10.1126/science.1207573.
(c) A. Berndt etal., Angew. Chem. 1988, 100, 956, DOI: 10.1002/ange.19881000712.
(d) A. Sekiguchi etal., J Am Chem Soc. 2006, 128, 422, DOI: 10.1021/ja0570741.

[3] (a) Y. Shoji, T. Matsuo, D. Hashizume, H. Fueno, K. Tanaka, K. Tamao, J. Am. Chem. Soc., 2010, 132, 8258, DOI: 10.1021/ja102913g.
(b) プレス記事
[4] Holger Braunschweig’s Group
[5] グループのサイトを見てみると、メンバー47人中頭文字がAもしくはBの研究者は7人のみ。Oh..
[6] M. Zhou et al., J. Am. Chem. Soc. 2002, 124, 12936. DOI: 10.1021/ja026257.

 

関連書籍

 

[amazonjs asin=”1244571288″ locale=”JP” title=”Articles on Organoboron Compounds, Including: Borabenzene, Borazine, Borole, 1,2-Dihydro-1,2-Azaborine, Borirane, Bortezomib, Boronic Acid, Phenylboro”][amazonjs asin=”1439826625″ locale=”JP” title=”Boron Science: New Technologies and Applications”]

関連記事

  1. 第2回「Matlantis User Conference」
  2. 研究助成情報サイト:コラボリー/Grants
  3. 分取薄層クロマトグラフィー PTLC (Preparative …
  4. アクリルアミド類のanti-Michael型付加反応の開発ーPd…
  5. 尿はハチ刺されに効くか 学研シリーズの回顧
  6. 水と塩とリチウム電池 ~リチウムイオン電池のはなし2にかえて~
  7. 僕がケムステスタッフになった三つの理由
  8. 未来博士3分間コンペティション2021(オンライン)挑戦者募集中…

注目情報

ピックアップ記事

  1. ノーベル化学賞解説 on Twitter
  2. 芳香族ボロン酸でCatellani反応
  3. メンデレーエフ空港
  4. “アルデヒドを移し替える”新しいオレフィン合成法
  5. 細菌ゲノム、完全合成 米チーム「人工生命」に前進
  6. よくわかる最新元素の基本と仕組み
  7. 化学者のためのエレクトロニクス講座~めっきの基礎編~
  8. Dead Endを回避せよ!「全合成・極限からの一手」②
  9. 化学大手4社は増収 4-6月期連結決算
  10. 取り扱いやすく保存可能なオキシム試薬(O-ベンゼンスルホニルアセトヒドロキサム酸エチル)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年6月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー