[スポンサーリンク]

一般的な話題

核酸医薬の物語1「化学と生物学が交差するとき」

[スポンサーリンク]

 

低分子医薬とも、抗体医薬とも違う次世代の医薬として期待されている核酸医薬。自然そのものの仕組みを明らかにする生物学に対して、ひとの手で自然にあるものを改良し不可能を可能に変える化学のアプローチは、核酸医薬にどのような魅力と可能性をもたらすのでしょうか。

化学と生物学が交差するとき物語は始まる

目次

自分Greenは、以前に「抗体医薬」の記事(参照:低分子医薬の代わりに抗体医薬がトップに?)を書かせていただきました。今度は、次世代医薬もうひとつの巨塔「核酸医薬」について書いていきたいと思います。核酸医薬は、抗体医薬よりも背景知識が広範に必要なため、上手くスッキリ書けるか分かりませんが、ぜひともご容赦ください。  

 

いわゆる核酸医薬の原理は、ウイルスを運び屋とした遺伝子治療とは、まったく異なります。遺伝子治療では、細胞に導入したDNAの塩基配列が、やがてアミノ酸配列に変換されタンパク質を作ることで、効果を発揮します。これに対して、核酸医薬では、体の中で起こる現象を、核酸自体が調節することで、効果を発揮します。核酸医薬の場合、遺伝子治療のように細胞核の中にあるゲノムDNAの配列を書き換えることはありません。

GREENk01.PNG

核酸自体が生命現象を調節する主役であるため、核酸医薬の原理を理解する上で、まず大切なことは核酸自体の化学性質です。ここで言う核酸とは、具体的に言うと、RNAであったりDNAであったりのことです。核酸はヌクレオチドと呼ばれるユニットがたくさん連なった高分子です。ビーズをつなげてネックレスを作るように、ヌクレオチドの配列には多彩なパターンがあります。この多様な配列により、核酸はそれぞれ複雑な立体構造を取ります。二重らせんだけでなく、自分の鎖の中で塩基対を形成すればより込み入った構造を取ります。

GREENk02.PNG

核酸に多彩な機能を持たせることが可能な一方で、核酸はこのように似たようなユニットのつながりで成り立っているため、核酸医薬は安定して大量合成が可能です。例えば、ゼロからタキソールのように複雑な構造の化合物を作ろうとすればあの手この手で化学反応を使い分ける必要があります。また、抗体医薬ならば鶏卵なり培養細胞なり生き物を用意してそこから手間をかけて抗体タンパク質を精製しなければなりません。当然、製造コストにこれらの事情は大きく響きます。一方、核酸医薬ならば、材料を用意して、同じような反応を何回か繰り返すだけで、目的の産物を手にすることができます。

また、核酸医薬は化学合成できるからこそ、人工の改変核酸をはじめ自然にあったものを改良して不可能を可能に変える化学の立場から貢献できる場面がたくさんあります。そのままのRNAやDNAには限界があり、どうしても天然のままのかたちでは薬として不都合があります。

GREENk03.PNG

ではでは、具体例をあげて、核酸医薬の仕組みを詳しく解説していきましょうか。

戦略1.RNAと相互作用して遺伝子の発現を調節するタイプ

戦略2.タンパク質など標的分子と相互作用して機能そのものを調節するタイプ

……と言いたいところですが、すみません。まだまだまったく本題までたどり着けていないため、何が面白いのかさっぱりかもしれませんが、いっぺんに説明してしまうと、とても長くなってしまうため、分割することにしました。もとの草稿はもうあるのですが、推敲してぼちぼち公開していきたいと思います。

化学と生物学が交差するとき物語は始まる 

ぼやき「ふたつが交差するところまで書こうとするから記事が長くなるのだけれども……」

 

関連書籍

[amazonjs asin=”4774145912″ locale=”JP” title=”ここまで進んだ次世代医薬品 ―ちょっと未来の薬の科学 (知りたい!サイエンス)”][amazonjs asin=”4758120161″ locale=”JP” title=”がんの分子標的と治療薬事典”]

 

Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. CV書いてみた:ポスドク編
  2. 理研の一般公開に参加してみた
  3. 日本薬学会第137年会  付設展示会ケムステキャンペーン
  4. スルホキシドの立体化学で1,4-ジカルボニル骨格合成を制す
  5. 死刑囚によるVXガスに関する論文が掲載される
  6. 核酸塩基は4つだけではない
  7. 金触媒で変身できるEpoc保護基の開発
  8. ハイブリッド触媒系で複雑なシリルエノールエーテルをつくる!

注目情報

ピックアップ記事

  1. 金属材料・セラミックス材料領域におけるマテリアルズ・インフォマティクスの活用
  2. 様々な化学分野におけるAIの活用
  3. 新形式の芳香族化合物を目指して~反芳香族シクロファンにおける三次元芳香族性の発現~
  4. 化学の学びと研究に役立つiPhone/iPad app 9選
  5. 杏林製薬、ノバルティス社と免疫抑制剤「KRP-203」に関するライセンス契約を締結
  6. 世界初のジアゾフリーキラル銀カルベン発生法の開発と活性化されていないベンゼノイドの脱芳香族化反応への応用
  7. 第104回―「生体分子を用いる有機エレクトロニクス」David Cahen教授
  8. ウルマンカップリング Ullmann Coupling
  9. 第四回ケムステVシンポ「持続可能社会をつくるバイオプラスチック」開催報告
  10. オンライン座談会『ケムステスタッフで語ろうぜ』開幕!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年4月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー