[スポンサーリンク]

一般的な話題

ダイヤモンドは砕けない

[スポンサーリンク]

 

4月の誕生石 ダイヤモンド

 

世界一硬い物質としてダイヤモンドは知られ、他の物質では歯が立たず、そのためダイヤモンドはダイヤモンド自体でもって磨かれます。なんという発想の転換、子どもの頃それを聞いて驚いたものです。4月になりましたので誕生石にちなんで、ダイヤモンドがなぜ磨けるのか、分子動力学のシミュレーション結果を紹介したいと思います。ただ単に、硬いもの同士で砕かれていたというわけではないようですよ。物理変化だけではなく、ダイヤモンドの研磨に潜んでいた化学反応とはいったい?

永遠の絆の象徴として、宝飾品でおなじみのダイヤモンド。ずば抜けて高い屈折率を持ち、電気は通さないものの熱はよく通し、ひっかき傷に対する硬さではナンバーワン。炭素の単体として知られ、産業界でも重要な材料です。 

硬いダイヤモンドを「磨く」というのだから、変化はやはりダイヤモンドの表面で起きています。研磨にともなう変化の舞台となるダイヤモンドの表面はどうなっているのかというと、高校ではごまかされてしまったと思いますが、アルキル基の水素原子であったり、ヒドロキシ基であったり、カルボニル基であったりして、永遠に炭素原子が続くわけではありません。今回、紹介する分子動力学シミュレーション[1]では、炭素原子の連なる端は便宜上すべて水素原子であるものとして演算しています。

samdiamond

ダイヤモンドは端まで永遠に炭素原子が続くわけではないッ!

 

ダイヤモンドで通常もとの炭素原子は4方向に結合がのびるsp3混成軌道を取っています。メタンやエタンと同じアレです。

強い力をかけてダイヤモンドどうしをこすりあわせると、まず3方向に結合がのびるsp2混成軌道になります。エチレンと同じアレです。

さらに、このまま続けると、炭素原子が2方向に結合がのびるsp混成軌道を取ります。アセチレンと同じアレです。

炭素がアモルファスに変化するとともに、ここで大気中の酸素分子が登場し、sp軌道を取った不安定な炭素原子と反応して、二酸化炭素なり一酸化炭素なりが生成するようです。単に砕かれていたわけではなく、磨かれるとダイヤモンドは表面だけ燃えていたというのです。

以前から知られていた減圧下ではダイヤモンドを擦りあわせても磨かれにくいという観察を、このシミュレーション結果は上手く説明することができます。酸素分圧がかなめだったのでしょう。

 

GREEN0401.PNG

論文[1]より

さすがダイヤモンド!

他の物質たちにできないことを平然とやってのけるッ!

 

 参考論文

[1] “Anisotropic mechanical amorphization drives wear in diamond” Lars Pastewka et al. Nature Materials 2010 DOI: 10.1038/NMAT2902 

 

関連書籍

 

Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. 目指せPlanar!反芳香族性NIR色素の開発
  2. 小説『ラブ・ケミストリー』聖地巡礼してきた
  3. アルカリ金属でメトキシアレーンを求核的にアミノ化する
  4. 自動車の電動化による素材・化学業界へのインパクト
  5. 有合化若手セミナーに行ってきました
  6. 離れた場所で互いを認識:新たなタイプの人工塩基対の開発
  7. みんなーフィラデルフィアに行きたいかー!
  8. 化学メーカー研究開発者必見!!新規事業立ち上げの成功確度を上げる…

注目情報

ピックアップ記事

  1. 自己紹介で差がつく3つのポイント
  2. 液相における粒子間水素移動によって加速されるアルカンとベンゼンの脱水素カップリング反応
  3. スーパーなパーティクル ースーパーパーティクルー
  4. 期待度⭘!サンドイッチ化合物の新顔「シクロセン」
  5. パール・クノール ピロール合成 Paal-Knorr Pyrrole Synthesis
  6. ケミカル・アリに死刑判決
  7. アルキンメタセシスで誕生!HPB to γ-グラフィン!
  8. 電気化学の力で有機色素を自在に塗布する!
  9. 化学物質でiPS細胞を作る
  10. 文具に凝るといふことを化学者もしてみむとてするなり⑳ドッキングステーションの巻

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年4月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー