[スポンサーリンク]

化学者のつぶやき

人を器用にするDNAーナノ化学研究より

[スポンサーリンク]

 

 

「俺のDNAにはナニかを形作るナニかが刻みこまれている!」

みたいないいまわしは時々、漫画か何かででてきそうな科白です。

そして実際にDNAには何かを形作る“ナニか”はあるのです。

 

DNAとナノ粒子を使ってつくる、超分子的なストラクチャーを作るの研究は20年くらい前から始まったのですが、ここ最近でノースウエスタン大学のMirkinグループを中心に劇的な進歩が見られていて、非常にアツいので紹介したいと思います。

DNAとは、4つの基本ユニットであるATCGと呼ばれる分子が連なる分子のことです。(*1)

この4つのユニットはAとT、CとGが選択的に接合します。ちょうど2対のはめ込み式のボタンのようなものです。

このはめ込みボタンが、うまく揃った時、(つまり例えば長いAの連なりとTの連なりがあるとき、)一対一対が吸着しあい、DNAはお互いをジップします。

 

ナノパーティクルにDNAをくっつけてなにか面白いこと出来ないか?ということで発表されたのが1996年のことで、AlivisatosグループとMirkinグループから同じ号のNatureに掲載されました。(ライバルグループが同じ号のNatureに同じテーマで掲載とは、これまた「生物と無生物の間」的なドラマがありそうな予感ですねぇ)

2015-07-31_01-46-38

 

ナノ粒子とDNAが上手くくっつく絵 (文献1bより)

当時は、TEMでナノ粒子同士のくっつき方をコントロールしたり、もしくは単にナノ粒子が水に溶けているか、溶けないかをコントロールするものだったのですが(*2)、それから時はたち約20年後、この技術は物凄く洗練されています。

 

例えば、ナノ粒子のある表面に選択的にDNAを配することにより、ナノ粒子同士が吸着する面が制御され、結果色々な形が出来上がります。

様々な形のナノ粒子を、接着剤としてDNAを使い、様々なアーキテクチャを作る。まさにプラモデル的。(*3)

2015-07-31_01-48-40

ナノ粒子とDNAによって作られる構造の一例 (文献2bより)

 

さらに最近のリポートでは、特定の部分にスペーサーを配することによって、 より密度の低いストラクチャーを作ったりしていて、まさに彼らに作れない構造はないのではという疑惑まで浮上してしまいます。

 

2015-07-31_01-50-09

ナノパーティクルとDNAそしてスペーサーによって作られる構造の一部 (文献2dより)

いやはやナノの世界を完全に制している気すらします。

このように生物の中にあるDNAという分子とナノ化学の分野が合体すると、人はナノメートル単位で3次元構造を操ることができるようになってきています。さてさて人はこれからどれだけ”器用”になれるのでしょうか?そしてその先にはナニが出来るようになっているのでしょうか?

福岡伸一先生の「生物と無生物のあいだ」ではありませんが、「バイオロジカルとナノ化学のあいだ」で生まれるこれらの研究にこれからも目が離せません!

 

(*1)正確にいうとDNAはリン酸と塩基の2つからなり、その塩基が4種類あるということです。

(*2)溶ける、溶けないという表現はコロイド系のナノパーティクルの分散系では厳密な意味では正しくなく、性格には分散(dispersed)と凝集(aggregated)という意味です。この場合ナノ粒子の表面にsingle strandのDNAを配置しているものを見ていて、十分に小さくまた表面がDNAにより親水化されている粒子は通常の状態では水系、もしくは一定のイオン濃度をもつ水系で、分散します。

(*3)ただし、これらは全てThermodynamicに安定な経路でできているわけではなく、つまりKinetics的なPathwayも重要な要素と考えられているので、接着剤的な表現はその意味では雑です。

 

参照文献

  1. (a) Mirkin C. et al  Nature 382, 607 – 609 (15 August 1996); doi:10.1038/382607a0 (b) Alivisatos P. et al. Nature 382, 609 – 611 (15 August 1996); doi:10.1038/382609a0
  2. (a) Mirkin C. et al  Nature 451, 553-556 (31 January 2008) doi:10.1038/nature06508 (b) Nature Mater. 9, 913–917 (2010). DOI: 10.1038/NMAT2870 (c) Science 334, 204–208 (2011) DOI:10.1126/science.1210493 (d) Nature Nanotech. 7,24–28(2012)doi:10.1038/nnano.2011.222

やすたか

投稿者の記事一覧

米国で博士課程学生

関連記事

  1. 2024年ノーベル化学賞は、「タンパク質の計算による設計・構造予…
  2. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  3. アメリカで Ph.D. を取る -Visiting Weeken…
  4. 宇宙に漂うエキゾチックな星間分子
  5. 単結合を極める
  6. 世界最高速度でCO₂からマルチカーボン化合物を合成~電気エネルギ…
  7. γ-チューブリン特異的阻害剤の創製
  8. イスラエルの化学ってどうよ?

注目情報

ピックアップ記事

  1. Appel反応を用いるホスフィンの不斉酸化
  2. 日本初の化学専用オープンコミュニティ、ケムステSlack始動!
  3. ICMSE International Conference on Molecular Systems Engineering
  4. 日本のお家芸、糖転移酵素を触媒とするための簡便糖ドナー合成法
  5. 脳を透明化する手法をまとめてみた
  6. 有機ラジカルポリマー合成に有用なTEMPO型フリーラジカル
  7. 潤滑油、グリースおよび添加剤の実践的分離【終了】
  8. ショッテン・バウマン反応 Schotten-Baumann Reaction
  9. 第128回―「二核錯体を用いる触媒反応の開発」George Stanley教授
  10. 簡単に扱えるボロン酸誘導体の開発 ~小さな構造変化が大きな違いを生んだ~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年4月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー