[スポンサーリンク]

化学者のつぶやき

Dead Endを回避せよ!「全合成・極限からの一手」④(解答編)

[スポンサーリンク]

 

このコーナーでは、直面した困難を克服するべく編み出された、全合成における優れた問題解決とその発想をクイズ形式で紹介してみたいと思います。

第4回は宮下・谷野らによるNorzoanthamineの全合成を取り上げました(問題はこちら)。今回はその解答編になります。

Total Synthesis of Norzanthamine
Miyashita, M.; Sasaki, M.; Hattori, I.; Sakai, M.; Tanino, K. Science 2004, 305, 495. DOI:10.1126/science.1098851

 

解答例

何はともあれ、望む反応および副反応のメカニズムを理解せずには手がつきません。

ここで進行させたい反応は、見ての通りケトンをアルキンに変換する反応です。無水トリフルオロスルホン酸(Tf2O)でケトンを処理してエノールトリフラートに変換した後、塩基(DBU)によるβ脱離を行うことで、望みの化合物が得られるという寸法です。

next_move_4a_1

しかし実際には望むアルキンBに加え、副反応由来のCが生じてきます。よくよくCを眺めると反応点の炭素原子の酸化度が変わっていることが分かります。実はこの副反応、分子内近傍に水素原子、またそれがエーテルのα位に位置しているために起こる、求電子性カルボニル基へのヒドリド転位が起点となっています。Tf2Oと反応するところまではABと同じ経路を共有しているのですが、その後が違っています。つまり、ヒドリド転位によってカルボニル基が還元されたあと、続く塩基処理によって分子内環化が起こることで、副生成物Cが生じているのです。

next_move_4a_2

さて以上の理解をもとに、どうやればCの生成を抑えられるか?と考えてみると、「分岐起点となるヒドリド転位を起きづらくしてやればいいのでは?」という発想に至ることができます。ABの経路には、ヒドリド転位の過程が存在しないためです。

問題文では「基質の重水素化によって解決した」とあることから、速度論的同位体効果(Kinetic Isotope Effect, KIE)を活用していると推測できます。KIEとはおおまかには「反応に関わる原子をより質量数の大きな同位体へと置換してやれば、反応速度が低下する」という現象です。これを念頭におくことで、転位してほしくない水素原子を重水素原子で置き換えれば、ヒドリド転位が抑制されるだろう、という発想が出てきます。

以上の考察から、下のようなA-d2こそが望む重水素化体であると考えることができます。

next_move_4a_3

予想外のトラブルへの対処から場当たり的に考えだされたはずのA-d2ですが、見かけ上はそれをかけらも感じさせない巧妙な経路で作られており、驚く他ありません。

まず、基本的な合成経路を全く変更することなく、重水素源として入手可能な試薬(Ph3PCD3Br)を使って作られています。これにより価格を抑えられることはもちろん、大きなルート変更を回避することで長年の蓄積がある知見をそのまま用いることができ、基礎研究に費やした時間を無駄にすることがなくなります。

また、最終的に重水素が全てが除去されて、標的に重水素を残さない経路設計になっている点も着目すべきでしょう。これは重水素化標的となっている炭素が、最終的にカルボン酸まで酸化される宿命にあるという本質に着目した一手となっています。

next_move_4a_4

合成経路を大局的に俯瞰できる眼があってこそ、今回のような「極限からの一手」の選択が可能となるのです。匠の発想がキラリと光る、優れた解決法だと思います。

本合成は過去にケムステでも詳細を解説しておりますので、そちらも併せてご覧頂ければと思います。

 

関連書籍

[amazonjs asin=”3527306447″ locale=”JP” title=”Dead Ends and Detours”][amazonjs asin=”B00DXJLDK6″ locale=”JP” title=”More Dead Ends and Detours: En Route to Successful Total Synthesis”]

 

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ツルツルアミノ酸にオレフィンを!脂肪族アミノ酸の脱水素化反応
  2. オープンアクセスジャーナルの光と影
  3. アメリカで Ph.D. を取る -Visiting Weeken…
  4. 光学迷彩をまとう海洋生物―その仕組みに迫る
  5. 共有結合性有機構造体(COF)の新規合成・薄膜化手法を開発
  6. SPring-8って何?(初級編)
  7. 光誘起電子移動に基づく直接的脱カルボキシル化反応
  8. 「話すのが得意」でも面接が通らない人の特徴

注目情報

ピックアップ記事

  1. 紫外線に迅速応答するフォトクロミック分子
  2. SlideShareで見る美麗な化学プレゼンテーション
  3. 大型リチウムイオン電池の基礎知識【終了】
  4. 私がケムステスタッフになったワケ(4)
  5. 三原色発光するシリコン量子ドットフィルム―太陽光、高温、高湿への高い耐久性は表面構造が鍵―
  6. スイスでポスドクはいかが?
  7. AIによる創薬に新たな可能性 その研究と最新技術に迫る ~米・Insitro社 / 英・ケンブリッジ大学の研究から~
  8. ボリレン
  9. ハーバート・ブラウン―クロスカップリングを導いた師とその偉業
  10. 【書籍】「メタノールエコノミー」~CO2をエネルギーに変える逆転の発想~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年4月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー