[スポンサーリンク]

一般的な話題

次世代の放射光施設で何が出来るでしょうか?

[スポンサーリンク]

お医者さんにいくと、X線を使って僕らは自分の体の中の情報を知ることができます。

化学や物理の実験室にいくと、X線を使って僕らは分子や原子の情報を知ることができます。

体の調子が悪い時に、何が原因で知ることが重要なように、なにか新しいものを発見した時に、どのようなメカニズムでその事象が起こっているかを知ることはとても重要な知見です。

X線や電子線は研究者にとっては割と身近な存在で、ある程度の大きさの研究所ではそれらを使った装置はとてもよく使われています。

 

ただしそんなX線や電子線ですが、世の中にはとっても”偉い”X線や電子線があります。それを使うと、より詳細に、より正確に、より多彩な条件でいろいろな事がわかるようになります。

その“偉い” X線や電子線を創りだすのが、放射光施設、シンクロトロンです。

 

“偉い”X線とは

ここで偉いというのは、つまり“研究に有用な”という意味です。実験をするには“真っ直ぐで” “強い”X線が欲しいです。

このようなX線のレシピは相対論的効果によって作られます(化学者にはムズカシイ)。電荷粒子が光速に近いくらいの速度で円運動していると、X線などの電磁波が回されている接線方向に飛び出してきます。

このようにして作られたX線を使うと、光の指向性が単一的輝度が強いX線が作られます。

このような装置の事を“シンクロトロン”と言います。

 

しかし、このような施設は容易に作れるものではありません。お金もかかります。壮観とも言えるほどの大きな装置で、世界でも有数です。

イメージ的にはサッカー場くらいの大きさの装置と考えていただければいいと思います。

 

日本、世界のシンクロトロン装置

spring jpg

Spring 8の全体図 (google imageより)

 

日本のシンクロトロン施設として有名なものは兵庫県播磨にあるSpring-8とつくばにある高エネ研(高エネルギー加速器研究機構)です。これらの施設は国内の多くの研究者に利用され、化学の発展に大きく寄与しています。

化学の実験で身近な物から挙げますと、X線の散乱をみて、結晶の構造を調べるX線構造解析やX線の吸収をみてその分子軌道を調べるX線吸収スペクトルなどに利用されています。

ちなみに世界最大のシンクロトロンはスイスにあるLHC(Large Hadron Collider)というもので、そこでしている研究で耳目を引きやすいものとしてはブラックホールが作れるようになるとか、ヒッグス粒子とか、化学者にとってはムズカシイ、少し異次元の研究もしています。そのシンクロトロンの大きさは円周27キロメートルと圧倒的に世界最大。

アメリカではAPS( Advanced Photon Source )や化学者にとってはコーネル大学やカルフォルニア大学バークレー校にほど近いCHESSやBevatronが有名です。

 

 

時代は第3世代から第4世代へ

そのようなシンクロトロンですが、やはり時代を重ねて進歩してきています。

1945年にエドウィンマクミランによって初めてのシンクロトロンが開発されて以降、様々な進化がなされています。

例えばSpring8で使われているのは第3世代と呼ばれるシステムです。加速電子を上手く運転させることにより、強力な光を取り出しています。これで得られる光の輝度、ラボで使われるX線装置のおよそ10の10乗!10時間かかるX線の測定がシンクロトロンを使うと1秒未満で出来るということになります。逆に言うとシンクロトロンで10分かかる測定は普通のラボでは1000年くらいかかるということです。

 

現在、シンクロトロンでつくられる電子ビームを、さらに加速させ、アンジュレーターに通過させることにより、レーザー的な単一波長的でさらにより輝度の強いX線を得るシステムが開発されています。これを第4世代型のシンクロトロンと呼びます。

このようにして得られた強い光を得られると、小さいスケールのみで得られる特殊な反応を得られることはもちろん、将来的には短い時間でおこる反応機構を一歩一歩追うことが出来るようになるかもしれません。

 

近い将来、化学という概念が変わるような発見や、当然のように信じられていた反応機構があっという形で覆されるかもしれません。

 

いやぁ、凄いっすよねぇ。

 

関連書籍

[amazonjs asin=”4904419138″ locale=”JP” title=”シンクロトロン放射光物質科学最前線―先端未踏領域を照らし出す英知の光”]

やすたか

投稿者の記事一覧

米国で博士課程学生

関連記事

  1. 高収率・高選択性―信頼性の限界はどこにある?
  2. 味の素グループの化学メーカー「味の素ファインテクノ社」を紹介しま…
  3. ヒト遺伝子の ヒット・ランキング
  4. シクロプロパンの数珠つなぎ
  5. 2つのグリニャールからスルホンジイミンを作る
  6. 炭素原子のまわりにベンゼン環をはためかせる
  7. 生体分子を活用した新しい人工光合成材料の開発
  8. 含窒素有機化合物の触媒合成について

注目情報

ピックアップ記事

  1. カルコゲン結合でロジウム二核錯体の構造を制御する!
  2. 第42回ケムステVシンポ「ペプチドと膜が織りなす超分子生命工学」を開催します!
  3. チロシン選択的タンパク質修飾反応 Tyr-Selective Protein Modification
  4. 化学者のためのエレクトロニクス講座~次世代の通信技術編~
  5. 第170回―「化学のジョブマーケットをブログで綴る」Chemjobber
  6. 多置換ケトンエノラートを立体選択的につくる
  7. 創発型研究のススメー日本化学会「化学と工業:論説」より
  8. ジョージ・チャーチ George M. Church
  9. アジリジンが拓く短工程有機合成
  10. ロビンソン環形成反応 Robinson Annulation

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年3月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP