[スポンサーリンク]

化学者のつぶやき

Anti-Markovnikov Hydration~一級アルコールへの道~

[スポンサーリンク]

多くの化成品は、石油から分離精製した低級アルカンを原料とし、特に工業的価値の高い直鎖型の化合物(例えば、直鎖アミンや直鎖アルコール)は、かなりシビアな反応条件を含む多段階プロセスを経て合成・精製される為、その過程において大量にエネルギーを消費します。

もし、温和な条件下で単純末端アルケンから一級アルコールを選択的に合成することが可能となれば、環境・工業的視点から石油化学の飛躍的な発展につながることでしょう。

と・こ・ろ・が、マルコフニコフ大魔神がそれをサムゲタンなわけです。

今回は、一級アルコールの選択な合成に関する研究に関して、これまでの背景もちょこっと含めつつ最新の論文とともにご紹介したいと思います。

ご存知の通り、酸触媒下におけるアルケンの水和反応ではMarkovnikov則に従って、より安定なカチオン性中間体を経た生成物が得られるため、直鎖型ではなく分岐型のアルコールが得られてきます(下図)。
rk10111101.gif
なんとか、簡便に一級をアルコールを得ることができないかと、世界中の化学者は長年奮闘してきています。そこに、ひとつの光を見出した(と思った)のが、1986年、TroglerらがScience誌に発表した、trans-PtHCl(PMe3)2を触媒とするAnti-Markovnikov型のアルケン水和反応でした(下図)[1]
rk10111102.gif

しかしこの反応、再現性がなく、その後いくつかの論文で疑問が投げかけられています[2]
一方、有機ホウ素化合物は、ホウ素置換部位を様々な官能基へと容易に変換することができるため、有機合成において重要な中間体化合物です。
アルケンのヒドロホウ素化は、末端部位をホウ素官能基化できるため、その後酸化するだけで、一級アルコールを得ることができます(下図)。またJ. F. Hartwigらによる最近の研究では、アルカンの末端CH結合を選択的にホウ素化する、いわゆる「触媒的ホウ素化反応」も報告されています(下図)[3]
rk10111103.gif
いずれの反応においても、アルケン・アルカンからホウ素化合物を経て、アルコールを含む直鎖型の有機化合物を選択的に合成することが可能ですが、

(1)二段階反応である点
(2)当量のホウ素化合物を要し、最終的に再利用しづらい副生成物になる点
(3)酸化過程でH2O2を利用するため、工業的大量合成時の安全面に関する懸念
[*アルカンに関して] (4) 比較的高い反応温度が必要である点(低沸点アルカン(CnH2n+2: n<5)やメタンのホウ素化反応は成功していない)
(5)ロジウム錯体間同士の反応による触媒の失活を防ぐため、錯体上の配位子はCp*のみに制限されており、触媒の立体及び電子的性質の最適化が困難である点

から、まだまだ改善の余地があるのが現状かと思います。
また最近では、アルカンの直接酸化からアルコールを得る反応も報告されていますが、やはり反応条件と選択性の観点からは、まだまだ発展中といったところでしょうか[4]。結局、現在工業的には、主に末端アルケンのヒドロホルミル化→還元過程で一級アルコールを生産しています[5]。
近年、この分野における革新的成果は、東京大学野崎先生山下先生(現 中央大学)らのグループによって開発されたRh/Ru-Dual Catalystシステムによる一段階での直鎖アルコール合成法です[6](下図)(参考資料)。
rk10111105.gif

基質の汎用性が高ければ、そのまま工業的にも利用できそうですね。

そして、Troglerらの論文から20年以上経過した先月、CaltechのGrubbs教授らによって、新しい触媒的Anti-Markovnikov型のアルケン水和反応が開発され、Scienceに報告されていました。

Guangbin Dong, Peili Teo, Zachary K. Wickens, Robert H. Grubbs, Science, 333, 1609 (2011) DOI: 10.1126/science.1208685

彼らが開発した方法は、以下に示す「Triple Relay 触媒反応」というもの(下図)[7]

rk10111104.gif

 

(1)Pd触媒による酸化反応で、アルケンをエーテルに変換(ここが選択性のポイント!嵩高いtBuOHを用いることでビニルエーテルが得られます)
(2)酸加水分解によりビニルエーテルをアルデヒドに変換
(3)Ru触媒による還元的水素化によりアルデヒドを一級アルコールに変換(iPrOHはアセトンになります)

現状では、基質がスチレン誘導体の場合のみ選択性が高いこと、多くの触媒と当量のベンゾキノンを要すること、が課題ですが、ガス(CO、H2)を使わず、触媒的にワンポットでの「アルケン→一級アルコール合成法」確立の第一歩として、すばらしい成果だと思います。

 

さて、ちょっと論文の中身からは離れますが、化学でブレークスルーを成し遂げようと思うとき、一つとても効果的なアプローチ方法・考え方があると思います。

既存のルールや教科書に載っている事実を壊してやろう!」、と。

まぁ、簡単じゃぁないですけどね。。でも、先人達の偉業に乗って展開する研究がある一方で、逆の方向に進むことで発展できるのも化学かな、と感じます。確立された「~rule」に「Anti-」を付ける研究開発、魅力的ですね。

 

参考文献

  1.  C. M. JENSEN, W. C. TROGLER, Science 233, 1069 (1986) DOI: 10.1126/science.233.4768.1069.
  2.  D. Ramprasad, H. J. Yue, J. A. Marsella, Inorg. Chem. 27, 3151 (1988) DOI: 10.1021/ic00291a021.
  3.  I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig, Chem. Rev. 110, 890 (2010) DOI: 10.1021/cr900206p.
  4. (a) K. Chen, P. S. Baran, Nature 459, 824 (2009) DOI:10.1038/nature08043.  (b) M. S. Chen, M. C. White, Science 318, 783 (2007) DOI: 10.1126/science.1148597.
  5. ALCOHOLS, HIGHER ALIPHATIC, SYNTHETIC PROCESSEShttp://onlinelibrary.wiley.com/doi/10.1002/0471238961.1925142023010714.a01/pdf
  6.  K. Takahashi, M. Yamashita, T. Ichihara, K. Nakano, K. Nozaki, Angew. Chem. Int. Ed. 49, 4488 (2010) DOI: 10.1002/anie.201001327.
  7.  H. U. Vora, T. Rovis, J. Am. Chem. Soc. 129, 13796 (2007) DOI: 10.1021/ja0764052.

関連書籍

[amazonjs asin=”189138953X” locale=”JP” title=”Organotransition Metal Chemistry: From Bonding to Catalysis”][amazonjs asin=”4882319411″ locale=”JP” title=”固定化触媒のルネッサンス”]

 

関連記事

  1. 液晶中での超分子重合 –電気と光で駆動する液晶材料の開発–
  2. 軽量・透明・断熱!エアロゲル(aerogel)を身近に
  3. 電流励起による“選択的”三重項励起状態の生成!
  4. 「幻のイオン」、テトラフェニルアンモニウムの合成を達成!
  5. 結晶学分野に女性研究者が多いのは何故か?
  6. 脈動がほとんどない小型精密ポンプ:スムーズフローポンプQシリーズ…
  7. 【東日本大震災より10年】有機合成系研究室における地震対策
  8. 抗結核薬R207910の不斉合成

注目情報

ピックアップ記事

  1. 海外留学ってどうなんだろう? ~きっかけ編~
  2. アサートン・トッド反応 Atherton-Todd Reaction
  3. TEtraQuinoline (TEQ)
  4. マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-
  5. 第138回―「不斉反応の速度論研究からホモキラリティの起源に挑む」Donna Blackmond教授
  6. ボールマン・ラーツ ピリジン合成 Bohlmann-Rahtz Pyridine Synthesis
  7. 核酸医薬の物語1「化学と生物学が交差するとき」
  8. 有機合成化学協会誌2017年12月号:四ヨウ化チタン・高機能金属ナノクラスター・ジシリルベンゼン・超分子タンパク質・マンノペプチマイシンアグリコン
  9. スティーブン・ジマーマン Steven C. Zimmerman
  10. 第34回 生物学と合成化学のハイブリッド高分子材料を開発する―Jeroen Cornelissen教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP