[スポンサーリンク]

化学者のつぶやき

Dead Endを回避せよ!「全合成・極限からの一手」②(解答編)

[スポンサーリンク]

 

このコーナーでは、直面した困難を克服するべく編み出された、全合成における優れた問題解決とその発想をクイズ形式で紹介してみたいと思います。

第2回はCoreyらによるβ-Araneosene の全合成を取り上げました(問題はこちら)。今回はその解答編になります。

Enantioselective Total Synthesis of Isoedunol and β-Araneosene Featuring Unconventional Strategy and Methodology.
Kingsbury, J. S.; Corey, E. J. J. Am. Chem. Soc. 2005, 127, 13813. DOI:10.1021/ja055137+

解答例

まずはピナコール転位のおさらいです。

普通は複数の置換基が転位可能とされますが、その傾向は大まかに①転位基の電子豊富さと、②脱離基と転位基の配座関係によって支配されています。

next_move_2a_2

カチオン性転位なので通常は電子豊富な置換基のほうが優先的に転位します。もちろんCoreyらはより電子豊富である3級アルキル基の転位を期待して鍵反応をデザインしたわけですが、今回のケースでは予想外に、1級アルキル基の方が転位してしまったというわけです。

next_move_2a_1

脱離基・転位基ともに独特の縮環構造に組み込まれている事実を考え合わせると、この場合には①電子的要因よりも②配座要因のほうが支配的だったと考察できそうです。すなわち、遷移状態において、脱離基と炭素とのσ*軌道の重なりが最も良くなる、アンチペリプラナー配座に位置する置換基が優先的に転位したということです。

 

さて、上記の様な理由でbの結合転位が起こっているならば、脱離基と転位基は下記左図のような3次元配置にあると推測されます。大員環の配座を厳密に予想することは、人間の頭では不可能に近いです。しかしながら実験結果に基づく限り、大まかな推測は不可能ではありません。

ではここからaの結合転位に持って行くにはどうすればいいか?・・・もうお分かりですね、脱離基OMsを3級アルキルから見てアンチペリプラナーに近い立体配置に持っていけば良いのです。つまり、2級アルコールを立体反転させた基質を使えば良いのでは?という提案が導きだされます。

next_move_2a_3

Coreyらは実際にそのようなストラテジーを採ることで、見事望みの転位体を得ています。(論文中ではより厳密な証拠として、原料のX線構造が提示されています。)

next_move_2a_4

さて、今回の問題はいかがでしたか?皆さんは「次の一手」に辿りつけたでしょうか?

 

関連書籍

[amazonjs asin=”3527306447″ locale=”JP” title=”Dead Ends and Detours”][amazonjs asin=”B00DXJLDK6″ locale=”JP” title=”More Dead Ends and Detours: En Route to Successful Total Synthesis”]

 

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 第37回ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤…
  2. アブノーマルNHC
  3. 有機合成化学協会誌2020年9月号:キラルナフタレン多量体・PN…
  4. 第三回ケムステVプレミアレクチャー「夢のある天然物創薬」を開催し…
  5. 官能基化オレフィンのクロスカップリング
  6. 合成化学の”バイブル”を手に入れよう
  7. 研究室クラウド設立のススメ(経緯編)
  8. コロナウイルスCOVID-19による化学研究への影響を最小限にす…

注目情報

ピックアップ記事

  1. ニュースタッフ参加
  2. フォルスター・デッカー アミン合成 Forster-Decker Amine Synthesis
  3. Brevianamide Aの全合成:長年未解明の生合成経路の謎に終止符
  4. O-脱メチル化・脱アルキル化剤 基礎編
  5. 第21回ケムステVシンポ「Grubbs触媒が導く合成戦略」を開催します!
  6. エコエネルギー 家庭で競争
  7. as well asの使い方
  8. 砂塚 敏明 Toshiaki Sunazuka
  9. ジャスティン・デュボア Justin du Bois
  10. フィリップ・イートン Phillip E. Eaton

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

中村 真紀 Maki NAKAMURA

中村真紀(Maki NAKAMURA 産業技術総合研究所)は、日本の化学者である。産業技術総合研究所…

フッ素が実現する高効率なレアメタルフリー水電解酸素生成触媒

第638回のスポットライトリサーチは、東京工業大学(現 東京科学大学) 理学院化学系 (前田研究室)…

【四国化成ホールディングス】新卒採用情報(2026卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

マイクロ波に少しでもご興味のある方へ まるっとマイクロ波セミナー 〜マイクロ波技術の基本からできることまで〜

プロセスの脱炭素化及び効率化のキーテクノロジーとして注目されている、電子レンジでおなじみの”マイクロ…

世界の技術進歩を支える四国化成の「独創力」

「独創力」を体現する四国化成の研究開発四国化成の開発部隊は、長年蓄積してきた有機…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

アザボリンはニ度異性化するっ!

1,2-アザボリンの光異性化により、ホウ素・窒素原子を含むベンズバレンの合成が達成された。本異性化は…

マティアス・クリストマン Mathias Christmann

マティアス・クリストマン(Mathias Christmann, 1972年10…

ケムステイブニングミキサー2025に参加しよう!

化学の研究者が1年に一度、一斉に集まる日本化学会春季年会。第105回となる今年は、3月26日(水…

有機合成化学協会誌2025年1月号:完全キャップ化メッセンジャーRNA・COVID-19経口治療薬・発光機能分子・感圧化学センサー・キュバンScaffold Editing

有機合成化学協会が発行する有機合成化学協会誌、2025年1月号がオンライン公開されています。…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー