[スポンサーリンク]

化学者のつぶやき

複雑分子を生み出す脱水素型ディールス・アルダー反応

[スポンサーリンク]

 

Molecular Complexity via C-H Activation: A Dehydrogenative Diels-Alder Reaction
Stang, E. M.; White, M. C. J. Am. Chem. Soc. 2011, ASAP. doi:10.1021/ja2059704

 

Diels-Alder反応は化合物の複雑度を迅速に増すことができる、有機合成における最重要反応の一つです。過去に無数の改良が報告されており、複雑化合物でも安心して使えるため、一見して万能そのものです。しかし実は1つだけ、現代まで解決しきれていない問題があります。それはジエンの調製法が限られている点です。ジエン自体が簡単なものであれば良いのですが、複雑なジエンとなるとその合成はとたんに難しくなります。ジエンの安定性そのものに難があるためです。

このような理由があるため、複雑な化合物同士でDiels-Alder反応を行うときは、直前までジエンを露出させない合成ルート設定を余儀なくされてしまいます。反応直前に共役系を伸長させたり、等価体をunmaskするといったアプローチがよく採られますが、先進的なアプローチとは言い難いものです。もともとがアトムエコノミーに優れた反応ですから、保護基などを使わずに、反応の先天的利点を殺さない解決法こそが望まれます。

この観点で大変スマートなアプローチが、イリノイ大学・Whiteらのグループから報告されました。彼女らは独自開発したC-H活性化触媒を用い、選択的脱水素化によってジエンを露出させるという新しい方法論を提示しています。

彼女らが開発したパラジウム触媒はアリル位選択的にC-H活性化を行い、求核剤とカップリングさせることができます。ならば条件を調節することで、β-ヒドリド脱離を経て1,3-ジエンを与えるのでは?という発想が端緒になっています。

white_DA_2.gif

 

最適条件においては求ジエン体を最初から共存させ、活性ジエンを低濃度に保つことが、重合などの副反応を抑えるために重要だったようです。適用の一部を以下に示しますが、条件自体も温和で、官能基選択性は総じて高いです。複雑化合物への適用可能性をきっちり示しているのも彼女らの論文の特徴です。短工程での4環性化合物合成への応用なども示されています。

white_DA_1.gif

 

このようにC-H活性化を適切に使うことで、ありふれた化合物を前駆体として活用することが可能になります。言い換えれば「C-H活性化をよくある局所的修飾法としてではなく、活性種の露出、さらには分子骨格の複雑化に使う」という視点でのコンセプト提示を行っているわけです。斬新な提案の一つといえるでしょう。

ところで論文中では、「末端オレフィンは1600種以上の市販品があるが、1,3-ジエンは120しか市販品が存在しない」という言及がなされています。これも自分の研究が極めて根源的であることを端的に示す、優れたアピール文だと思えます。「シンプルながら入手困難な物質を簡単に作りだす」という到達目標は、合成化学のアイデンティティとも呼ぶべき一つであり、また時代を通じて不変だからです。

「市販品の数」と「合成容易さ・安定性」の間にパラレルな関係がある事自体は、言われて見れば当たり前です。しかし論文で報告される反応の原料というのはたいていが複雑で、市販品でもありません。そもそもこういう類のアピール機会に恵まれないのがほとんどではないでしょうか。

つまりは、このような言及ができるという事実だけでも、コンセプトが極めてベーシックなものであり、かつ高い実用性へ結びつくポテンシャルを秘めている、と言えそうです。反応開発に望む研究者であれば、このような一文がさらりと書けるような研究を目指したいものですね。

 

関連書籍

[amazonjs asin=”3642123554″ locale=”JP” title=”C-H Activation (Topics in Current Chemistry)”][amazonjs asin=”4759813659″ locale=”JP” title=”不活性結合・不活性分子の活性化: 革新的な分子変換反応の開拓 (CSJカレントレビュー)”]

 

関連リンク

White Research Group

 

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 続・企業の研究を通して感じたこと
  2. 【速報】ノーベル化学賞2014ー超解像顕微鏡の開発
  3. アルキンメタセシスで誕生!HPB to γ-グラフィン!
  4. Reaxys体験レポート:ログイン~物質検索編
  5. 高分子のらせん構造を自在にあやつる -溶媒が支配する右巻き/左巻…
  6. Dead Endを回避せよ!「全合成・極限からの一手」⑤(解答編…
  7. 私達の時間スケールでみても、ガラスは固体ではなかった − 7年前…
  8. 未来の製薬を支える技術 – Biotage®金属スカベンジャーツ…

注目情報

ピックアップ記事

  1. ピエトロ・ビギネリ Pietro Biginelli
  2. アメリカの大学院生だってパーティするっつーの! 【アメリカで Ph.D. を取る –Qualification Exam の巻 後編】
  3. 日本語で得る学術情報 -CiNiiのご紹介-
  4. 第21回 バイオインフォ-マティクスによる創薬 – Heather Carlson
  5. 薬学会年会も付設展示会キャンペーンやっちゃいます
  6. 有機化学1000本ノック【反応機構編】
  7. 複雑な試薬のChemDrawテンプレートを作ってみた
  8. LG化学がグローバルイノベーションコンテストを開催へ
  9. カルバメート系保護基 Carbamate Protection
  10. 2残基ずつペプチド鎖を伸長できる超高速マイクロフロー合成法を開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年9月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー