[スポンサーリンク]

一般的な話題

Ns基とNos基とDNs基

[スポンサーリンク]

Ns(ノシル=2-Nitrobenzenesulfonyl)基といえば、アミンの保護および活性化の役割を果たす非常に頼もしい保護基です。ご存じの通り、菅敏幸先生、福山透先生によって開発された保護基です。

Kan, T.; Fukuyama, T. Chem. Commun. 2004, 353.

DOI: 10.1039/b311203a

言うまでもないと思いますが、Ns基はチオフェノールなどのチオールを求核付加させると、Meisenheimer錯体を経由して脱保護されます。この脱保護の反応条件は、多くの場合、他の保護基とオルトゴナルに脱保護することができます。

Ns基は2位にニトロ基を持ちますが、保護、アルキル化、脱保護のどの観点からしても、ニトロ基の位置は4位でも良い気がします。むしろニトロ基は4位にあった方がNMRの芳香環領域が見やすくて良い気がします。

 

一般的な表記ではないかもしれませんが、「人名反応に学ぶ有機合成戦略」という本では、この4位にニトロ基を有するタイプの保護基(すなわち4-Nitrobenzenesulfonyl基)を「Nos」という略語で示しています。実際Nos基でもNs基と同様の反応が行えるようです。しかしながら、保護基の導入において用いるNosClは、NsClと比べると非常に高価なので、あまり好んで利用する人はいないでしょう。これら2つの保護基が反応性に影響を及ぼすという報告例があれば面白そうです。

 

2位と4位の両方にニトロ基を有するタイプの保護基はときどき見かけます。DNs基です。

ニトロ基が増えた分、Ns基よりも弱い求核剤でMeisenheimer錯体を形成し、容易に脱保護されます。今年、福山先生の講演を聞く機会があったのですが、「Meisenheimer錯体」が今、有機化学の教科書にきちんと載っているか心配されていました。

Meisenheimer錯体、ちゃんと多くの教科書に載っています。教科書の知識をいかに日々の研究に活かそうとするか、というところがNs基のケミストリーのような面白いケミストリーの発展に繋がっていくわけですね。

追記
静岡県立大の菅敏幸先生より
1)Nos基よりもNs基を用いる理由
2) DNs基の利点
3) 脱保護に用いるチオールの悪臭問題の解決法

を直接教えて頂きました。ありがとうございます!

Nos基(p-ニトロベンゼンスルホニル)でなく、Ns基(o-ニトロベンゼンスルホニル)を第一選択としている理由は、安価であることも一つの理由です。しかし、それだけでなくNos基の脱保護では副反応が進行する報告があるためです[1]
また、光延反応を行う場合はNs基の方が良好である場合が多いです。DNs基は、Ns基存在下、選択的な除去が可能[2[であり、より穏和な条件にて脱保護できるため不安定な化合物合成に有効です。[3]

また本保護器の脱保護の際、チオフェノールの悪臭の問題をよく聞かれます。アミン合成の場合は、過剰量を必要としますが4-カルボキシフェニルチオールを用いると微臭かつ後処理が簡便なようです。[4] また、フェノールのNs保護体の場合は 、2-アミノフェニルチオールが簡便です。

 

参考文献

  1. Wuts, P. G.M.;Northuis,  J. M. Tetrahedoron Lett, 1998, 39, 3889. DOI: 10.1016/S0040-4039(98)00684-4 
  2. Fukuyama, T.; Cheung, M.;  Jow, C-K.; Hidai, Y.; Kan. T. Tetrahedron Lett. 1997, 38,  5831. DOI: 10.1016/S0040-4039(97)01334-8 
  3. Wakimoto, T.; Asakawa, T.; Akahoshi, S.; Suzuki, T.; Nagai, K.; Angew. Chem. Int. Ed.  2011, 50, 1168.  DOI;10.1002/anie.201004646
  4. M. Node et. al, Synth. Commun 2008, 38, 119.
  5. Aihara, Y.; Yoshida, A.; Furuta, T.; Wakimoto, T.; Akizawa, T.; Konishi, M.; Kan, T. Bio. Med. Chem. Lett, 2009, 19, 4171. DOI:10.1016/j.bmcl.2009.05.111

by  ブレビコミン 2011.11.6

 

関連書籍

[amazonjs asin=”1118057481″ locale=”JP” title=”Greene’s Protective Groups in Organic Synthesis”][amazonjs asin=”4759810684″ locale=”JP” title=”人名反応に学ぶ有機合成戦略”]

 

Avatar photo

らぱ

投稿者の記事一覧

現在、博士課程にて有機合成化学を学んでいます。 特に、生体分子を模倣した超分子化合物に興味があります。よろしくお願いします。

関連記事

  1. 博士課程の夢:また私はなぜ心配するのを止めて進学を選んだか
  2. HTML vs PDF ~化学者と電子書籍(ジャーナル)
  3. CRISPRの謎
  4. ⽔を嫌う CH₃-基が⽔をトラップする︖⽣体浸透圧調整物質 TM…
  5. コロナウイルスが免疫システムから逃れる方法(1)
  6. 室温、中性条件での二トリルの加水分解
  7. 図に最適なフォントは何か?
  8. 標的指向、多様性指向合成を目指した反応

注目情報

ピックアップ記事

  1. ケミカル・ライトの作り方
  2. ギンコライド ginkgolide
  3. 兵庫で3人が農薬中毒 中国産ギョーザ食べる
  4. 銀を使ってリンをいれる
  5. 文具に凝るといふことを化学者もしてみむとてするなり⑫:「コクヨのペーパーナイフ」の巻
  6. C(sp3)-Hアシル化を鍵とするザラゴジン酸Cの全合成
  7. 陶磁器釉の構造入門-ケイ酸、アルカリ金属に注目-
  8. 生体組織を人工ラベル化する「AGOX Chemistry」
  9. 未来のノーベル化学賞候補者(2)
  10. DOIって何?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年9月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー