[スポンサーリンク]

化学者のつぶやき

理想のフェノール合成を目指して~ベンゼンからフェノールへの直接変換

[スポンサーリンク]

 

Direct Oxygenation of Benzene to Phenol Using Quinolinium Ions as Homogeneous Photocatalysts
Ohkubo, K.; Kobayashi, T.; Fukuzumi, S. Angew. Chem. Int. Ed. 2011, Early View. DOI: 10.1002/anie.201102931

フェノールは樹脂や化成品の原料として広く用いられるポピュラーな化合物の一つです。その多くはクメン法とよばれる工業プロセスに則って作られています。これはベンゼンから得られるクメンを酸素酸化し、フェノールとアセトンへと変換するプロセスになります。しかし以下のとおり3工程の化学変換と高エネルギーを要し、また総収率(約5%)という面でも改善の余地を残しています。

cumene_phenol.gif

クメン法

光エネルギーを使ってベンゼンを直接酸化することが出来れば、紙の上ではもっとも理想的なフェノールの製法になります。近年では不均一系触媒を用い、関連する有望な報告が徐々になされつつあります。しかし均一系触媒ではこのような変換は難しく、現在まで報告例はありませんでした。

このたび大阪大学の福住らは、3-シアノ1-メチルキノリニウムイオン(QuCN+)という化合物を均一系光触媒として用いることで、メタルフリーでの、ベンゼンからフェノールへの酸素酸化を実現しました。

QuCN+は光照射下の一重項励起状態において、ベンゼンを酸化するのに十分な酸化力を持つことがすでに明らかにされています[1]。これに加えて詳細な知見を得るべく、福住らはフェムト秒オーダーのレーザーフラッシュフォトリシス法で、高速化学過程を追跡しています。

これにより、反応系中でベンゼンから一電子がQuCN+に移動したQuCNラジカルおよびベンゼンラジカルカチオンのπダイマーの生成が検出されました。水の存在下では、ベンゼンラジカルカチオンの消費は1次速度式に従い、また水の量を増やすと速度が増すことなどから、ラジカルカチオンに(分子状酸素ではなく)水が付加することでフェノールが生成していると考えられます。一方のQuCNラジカルは、分子状酸素と反応して消費されていきます。

面白いことにこの触媒系では、フェノールの過剰酸化がかなり抑制されています。これについては、フェノール→QuCN+*への電子移動が起きたとしても、その逆過程がきわめて速く、水の付加が起こる前に逆電子移動が進行してしまうためと説明されています。一方でベンゼン→QuCN+*の場合には、電子移動過程が極めて吸エルゴン的であり、Marcus理論で言うところのinverted regionに属し逆電子移動過程の速度が遅くなっている、そのため反応が良好に進行すると考えられています。

まとめて、以下のような触媒サイクルが提唱されています。

benzene_phenol_2.gif均一系触媒にて金属を使わず困難な変換を達成した点、および過剰反応の抑制に関する重要な知見を与えている点で、本報告は非常に価値あるものの一つと思えます。

次世代型のフェノール合成法に向けた一歩となるか?今後も期待していきたいと思います。

 

関連文献

  1.  Ohkubo, K.; Suga, K.; Morikawa, K.; Fukuzumi, S. J. Am. Chem. Soc. 2003, 125, 12850. DOI: 10.1021/ja036645r

関連リンク

大阪大学 福住研究室

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. バイオ触媒によるトリフルオロメチルシクロプロパンの不斉合成
  2. 「同時多発研究」再び!ラジカル反応を用いたタンパク質の翻訳後修飾…
  3. 抗結核薬R207910の不斉合成
  4. 合成化学発・企業とアカデミアの新たな共同研究モデル
  5. Anti-Markovnikov Hydration~一級アルコ…
  6. 分子模型を比べてみた
  7. サントリー生命科学研究者支援プログラム SunRiSE
  8. 元素検定にチャレンジせよ!

注目情報

ピックアップ記事

  1. Practical Functional Group Synthesis
  2. 宮浦・石山ホウ素化反応 Miyaura-Ishiyama Borylation
  3. タンパクの「進化分子工学」とは
  4. 2024 CAS Future Leaders Program 参加者インタビュー ~世界中の同世代の化学者たちとかけがえのない繋がりを作りたいと思いませんか?~
  5. アレクセイ・チチバビン ~もうひとりのロシア有機化学の父~
  6. 電子実験ノートもクラウドの時代? Accelrys Notebook
  7. 進め、分子たち!第2回国際ナノカーレースが3月に開催
  8. アンリ・カガン Henri B. Kagan
  9. ペンタフルオロスルファニル化合物
  10. 二酸化炭素をメタノールに変換する有機分子触媒

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年8月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

ヤーン·テラー効果 Jahn–Teller effects

縮退した電子状態にある非線形の分子は通常不安定で、分子の対称性を落とすことで縮退を解いた構造が安定で…

鉄、助けてっ(Fe)!アルデヒドのエナンチオ選択的α-アミド化

鉄とキラルなエナミンの協働触媒を用いたアルデヒドのエナンチオ選択的α-アミド化が開発された。可視光照…

4種のエステルが密集したテルペノイド:ユーフォルビアロイドAの世界初の全合成

第637回のスポットライトリサーチは、東京大学大学院薬学系研究科・天然物合成化学教室(井上将行教授主…

そこのB2N3、不対電子いらない?

ヘテロ原子のみから成る環(完全ヘテロ原子環)のπ非局在型ラジカル種の合成が達成された。ジボラトリアゾ…

経済産業省ってどんなところ? ~製造産業局・素材産業課・革新素材室における研究開発専門職について~

我が国の化学産業を維持・発展させていくためには、様々なルール作りや投資配分を行政レベルから考え、実施…

第51回ケムステVシンポ「光化学最前線2025」を開催します!

こんにちは、Spectol21です! 年末ですが、来年2025年二発目のケムステVシンポ、その名…

ケムステV年末ライブ2024を開催します!

2024年も残り一週間を切りました! 年末といえば、そう、ケムステV年末ライブ2024!! …

世界初の金属反応剤の単離!高いE選択性を示すWeinrebアミド型Horner–Wadsworth–Emmons反応の開発

第636回のスポットライトリサーチは、東京理科大学 理学部第一部(椎名研究室)の村田貴嗣 助教と博士…

2024 CAS Future Leaders Program 参加者インタビュー ~世界中の同世代の化学者たちとかけがえのない繋がりを作りたいと思いませんか?~

CAS Future Leaders プログラムとは、アメリカ化学会 (the American C…

第50回Vシンポ「生物活性分子をデザインする潜在空間分子設計」を開催します!

第50回ケムステVシンポジウムの開催告知をさせて頂きます!2020年コロナウイルスパンデミッ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP