[スポンサーリンク]

化学者のつぶやき

このホウ素、まるで窒素ー酸を塩基に変えるー

[スポンサーリンク]

三置換の有機ホウ素化合物はオクテット則を満たさないため、電子欠損状態を補うべく、多中心結合やクラスターを容易に形成します。また、空のp軌道に起因して、通常、求電子剤・ルイス酸として働くだけでなく、一電子還元により容易にアニオンラジカル種を発生させます。一方、アミンは、窒素上に孤立電子対をもつため、通常、求核剤・ルイス塩基として働き、一電子酸化するとカチオンラジカル種が発生します。

この度、カリフォルニア大リバーサイド校のBertrandらのグループは、まるで窒素のような振る舞いをするホウ素化合物の開発に成功し、その成果がScience誌に発表されていたので紹介したいと思います。

‘Synthesis and Characterization of a Neutral Tricoordinate Organoboron Isoelectronic with Amines’
Kinjo, R.;  Donnadieu, B.; Celik, M. A.;  Frenking, G.;  Bertrand, G. Science 2011, 333, 610. DOI: 10.1126/science.1207573

Bertrandらが用いた手法は、還元条件下でホウ素上にカルベンを二つ導入するというもの(下図)。得られた三配位ホウ素化合物(1)は、オクテット則を満たし、アミン・ホスフィンの等電子構造体です。合成例の少ない一価のホウ素化学種、また遷移金属以外で安定化された初めての単離可能なボリレン(参考記事:ボリレン)としても、インパクトある化合物です。さらに、形式上ホウ素2マイナスという驚きの極限構造(1b)を描くことができ、pブロック元素の中では電気陽性なホウ素が、電子豊富な状態になっていることがイメージできます。

 

brom_amine1.png

 

実際、(1)と酸(HOTf)との反応では、ホウ素上がプロトン化されたボレニウムカチオン種(2)が得られています(下図)。即ち、(1)は塩基として働き、(2)は共役酸ということになります。また、(1)の一電子酸化反応では、ボリニリウムラジカル種(3)が得られ、数少ない安定ホウ素ラジカル種の構造まで明らかにしています。これらの結果は、この化合物(2)が電子構造だけじゃなく、化学的な振る舞いもアミンと類似していることを証明しています。新しい求核性ホウ素の誕生ですね(参考記事:ホウ素は求電子剤?求核剤?)。

 

boron_amine2.png

今回の成果に関するBertrandらのコメントとG. H. RobinsonらによるPerspective(Science 2011333, 530. DOI: 10.1126/science.1209588 )の内容まとめると以下の通りとなります。

・ある元素を別の元素変えたような発見である。
・遷移金属錯体の配位子として現在広く用いられているアミン・ホスフィンに、新しい仲間が加わるであろう。これは、全く新しい触媒開発の第一歩である。
・ホウ素はリンと比べ低毒・安価であり、環境面からも利用価値が高い。
・他の高周期13族元素(Al, Ga..)も同様に塩基・求核剤として利用できる可能性がある。
・カルベン一つのみで安定化されたボリレンの開発にも期待できる。

「金属を持たない13族元素が塩基として働く」
という常識を覆した素晴らしい成果だと思います。

というわけで、なれない分野の紹介をさせていただきましたが、なぜ執筆したかといいますと、率直にいえばこの論文の第一著者金城玲博士を紹介したかったからです。

この分野におけるライジングスターである金城博士は筑波大学関口章研究室出身。大学院生時代に世界で初めてジシリン(ケイ素ーケイ素三重結合)を単離することで一躍名を轟かせました(Science 2004, 305, 1755. DOI:10.1126/science.1102209)。個人的に何度か連絡を取ったことはあるものの顔を合わせたことはありませんが、同期(同年に博士を取得)であり、同じカリフォルニアで海外学振研究員であったことから昔から非常に注目していました。

そんな金城博士はなんと今年の12月からシンガポールの南洋理工大学(Nanyang Technological University:NTU)でAssistant Professorとして独立して研究室を主宰することに決定したそうです。すでにNTUのホームページには記載されております(こちら)。また、今年の第22回基礎有機化学討論会で口頭発表を行うというお話を聞いたのでぜひ皆様足を運んでみたらいかがでしょうか。彼がどのようなエキサイティングな研究を行っていくのかこれから大変楽しみであり、応援したいと思います。

人に興味をもつことででケミストリーにも興味を持つ。このような流れで得られた知識は頭に定着します。ケムステではこのような若手のライジングスターも国外問わずピックアップしていき紹介したいと思いますので、もし「すごい人」ご存知の方がいましたらご一報を。

ところで、この場では取り上げることが出来ませんでしたが、Scienceの同号に京都大学化学研究所の村田靖次郎教授らによる「水を入れたフラーレンの合成」(Kurotobi, K.; Murata Y. Science 2011, 333, 613. DOI: 10.1126/science.1206376)も報告されていますのでご覧になってください。こちらも独自のフラーレンの分子手術法(molecular surgery:過去記事:炭素ボールに穴、水素入れ閉じ込め 「分子手術」成功)を使った素晴らしい研究であると思います。

 

外部リンク

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. そこまでやるか?ー不正論文驚愕の手口
  2. アルカリ土類金属触媒の最前線
  3. ベンゼン環が壊れた?!ー小分子を活性化するー
  4. アルケンでCatellani反応: 長年解決されなかった副反応を…
  5. ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティク…
  6. 反応がうまくいかないときは冷やしてみてはいかが?
  7. 化学系学生のための企業合同説明会
  8. 新アルゴリズムで量子化学的逆合成解析の限界突破!~未知反応をコン…

注目情報

ピックアップ記事

  1. 天然物の構造改訂:30年間信じられていた立体配置が逆だった
  2. 英文校正会社が教える 英語論文のミス100
  3. 第96回―「発光機能を示す超分子・ナノマテリアル」Luisa De Cola教授
  4. ブレデレック ピリミジン合成 Bredereck Pyrimidine Synthesis
  5. Pixiv発!秀作化学イラスト集【Part 2】
  6. 水素化ジイソブチルアルミニウム Diisobutylaluminium hydride
  7. 第93回日本化学会付設展示会ケムステキャンペーン!Part II
  8. 研究倫理を問う入試問題?
  9. キラル超原子価ヨウ素試薬を用いる不斉酸化
  10. ミニスキ反応 Minisci Reaction

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年8月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー