[スポンサーリンク]

化学者のつぶやき

ボリレン

[スポンサーリンク]

 

ご存知の通り、三配位ホウ素化合物は空のp軌道を持つため、通常、ルイス酸・求電子剤として働きます。ところが、以前のつぶやきで紹介したとおり、種々の分子設計により求核剤として働くホウ素化合物が近年報告されています。

汎用性の高い合成方法であることや数々の興味深い反応性を生み出し続けていることから、求核的ホウ素化合物のトップを走っているのは紛れもなくボリルリチウム種 [1]である、と筆者は個人的に思っております。

一方で、ボリルアニオンと並び、ホウ素化学における合成ターゲットとして今も挑戦され続けている化合物として、「ボリレン(Borylene:Boranediylとも呼ぶ)」があります。

 

0420111.gif

 

ボリレンとは原子価が1の中性ホウ素化学種で、ルイス塩基を配位させるとカルベンと等電子構造になります。カルベンが求核性を示すのと同様に、ボリレンもまた求核的ホウ素化合物となり得ること、また空のp軌道を持つことから、新規ホウ素化合物の合成や配位子としての応用が期待できる魅力的な化合物です。
今回、ボリレン、しかもParent Borylene(:BH)に関する研究がAngew誌に報告されていたので、
ざっくりボリレン化学の歴史と共に紹介したいと思います。

ボリレン-遷移金属錯体の合成例は数多く知られていますが [2]、ボリレン自体はその反応性の高さゆえ未だ単離例はありません。
そこで遷移金属錯体以外で、ボリレンに関する論文というものをざっと調べてみました。

まず、フリーなボリレンの反応中間体としての発生~直接観測は今のところ以下の2例だけだと思います [3]。

 

0420112.gif

 

 

また発生~化学的な捕捉実験(もしくは異性化)に関する報告例も少なく [4]、反応機構がはっきりしないので、この内のいくつかは本当にボリレンを中間体としているのか、ラジカル機構や他のルートの可能性も否めないかと。

 

0420113.gif

同様に、Robinsonによって報告されたジボレンもボリレン経由(ボリレンの二量化)と見なせますが、実験的な証拠はありません [5]。

0420114.gif

 

 

一方、ちょっと特殊な例だと、以下の化学種が構造まで取れています [6]。論文タイトルに「ボリレン」と書いてありますが、個人的には、これをボリレンと呼んでいいのかなって気がします(定義にもよるかもしれませんが、これが「ボリレン」なら、たとえばカルボラン中のホウ素もボリレンと言っちゃえるかと。違うかな。。どうなんでしょう)。

 

0420115.gif

 

で、ごく最近、安定ボリレン合成検討に関する論文が、ボリルリチウム種発生の地、東大の野崎先生の研究室から報告されています [7](ちなみに、著者の一人で、先日研究者インタビューでも紹介した山下先生は、この4月から独立されたようです!)。

0420116.gif
結果的には安定ボリレンは得られておらず、中間体もラジカル種である可能性が高いと結論づけていますが、安定ボリレン合成に必要な知見を実験的に明らかにし始めている、重要な研究だと思います。

ざっと見た限り、ボリレン種は中間体としての性質もまだ十分には明らかにされていない、というのが現状だと感じます。

さて、この度、ドイツ・ウルツヴルグ大のBraunschweigらのグループは、Parent Borylene(:BH)の発生に関する論文を報告しています。

P. Bissinger, H. Braunschweig, K. Kraft, T. Kupfer, Angew. Chem. Int. Ed. (2011), doi:10.1002/anie.201007543

発生法は至ってシンプル。ジクロロボランのカルベン付加体をナトリウムナフタレニドで還元するのみ。この:BH種は、FeやRuを含む架橋型の遷移金属錯体として単離例がいくつか報告されていますが [8]、一つのルイス塩基(NHC)のみが配位した例は今回が初めて。(またこの:BH種、化学レーザーとしての応用も期待できる!、とか文献[3]に書いてありましたが、正直よく解りませんでした。。)

04201170.gif

 

最終的に、中間体として発生していると考えられるNHCで安定化された:BH種は、ナフタレンと[1+2]環化付加した二種のジアステレオマーを与えています。

結局は、NHCで安定化しても単離することはできていませんが(と言うか、Robinsonの例を考えると、Me置換NHCでは無理かと思いますが)、生成したジアステレオマー比が1:1であることや、ジアステレオマー間のエネルギー差が小さいこと、その他、実験及び理論的アプローチにより、中間体はラジカルでもイオンでもなくボリレンだ、とのこと。・・・うむ。直接観測はできていないようですが、ボリレンの性質について新たに実験的に解明したと言う点で評価されている論文ですね。

また、全体の流れを見てみると、安定ボリレンへのアプローチとしては()塩基で安定化すること ()大きな置換基を用いて二量化や他の分子との反応を防ぐこと ()ラジカル中間体の発生を抑えること、等が挙げられることがわかりますね。着々と単離成功に近づいているのではないでしょうか。

まぁーそれにしてもBraunschweigは次から次へと、様々なホウ素化合物を作り出してくるもんですね(以前のつぶやき)。


だがしかし!
、記憶に新しい昨年の鈴木章・根岸英一教授ノーベル賞受賞然り、ホウ素を使う有機化学という点で、日本は今もトップランナーの一国であることは間違いないと思います!

また、未開拓であるってことは、同時に多くの夢を描くことができる! ということ。インパクトあるホウ素化合物が日本から誕生することを期待しています。

 

参考文献

  1.  Segawa, Y.; Yamashita, M.; Nozaki, K. Science2006314, 113-115. DOI: 10.1126/science.1131914
  2. H. Braunschweig, R. D. Dewhurst, A. Schneider, Chem. Rev. 2010, 110, 3924. DOI: 10.1021/cr900333n
  3. (a) J. Clark, M. Konopka, L.-M. Zang, E. R. Grant, Chem. Phys. Lett. 2001, 340, 45. doi:10.1016/S0009-2614(01)00348-7 (b) H. F. Bettinger, J. Am. Chem. Soc. 2006, 128, 2534. DOI: 10.1021/ja0548642
  4.  (a) S. M. Vanderkerk, J. C. Roos-Venekamp, A. J. M. Vanbeijnen, G. J. M. Vanderkerk, Polyhedron 1983, 2, 1337. DOI:10.1016/S0277-5387(00)84396-X (b) M. Ito, N. Tokitoh, T. Kawashima, R. Okazaki, Tetrahedron Lett. 1999, 40, 5557. DOI:10.1016/S0040-4039(99)01036-9 (c) W. J. Grigsby, P. P. Power, J. Am. Chem. Soc. 1996, 118, 7981. DOI: 10.1021/ja960918j
  5. Yuzhong Wang, Brandon Quillian, Pingrong Wei, Chaitanya S. Wannere, Yaoming Xie, R. Bruce King, Henry F. Schaefer, III, Paul v. R. Schleyer, and Gregory H. Robinson, J. Am. Chem. Soc., 2007, 129, 12412. DOI: 10.1021/ja075932i
  6. Peter Greiwe, Alexandra Bethauser, Hans Pritzkow, Thorsten Kuhler, Peter Jutzi, Walter Siebert, Eur. J. Inorg. Chem. 2000, 9, 1927, DOI: 10.1002/1099-0682(200009)
  7. M. Yamashita, Y. Aramaki, K. Nozaki, New J. Chem. 2010, 34, 1774. DOI: 10.1039/C0NJ00363H
  8. K. Geetharani, Shubhankar Kumar Bose, Babu Varghese, Sundargopal Ghosh, Chem. Eur. J. 2010, 16, 11357. DOI: 10.1002/chem.201001208

 

関連記事

  1. ダイセルが開発した新しいカラム: DCpak PTZ
  2. ケムステスタッフ Zoom 懇親会を開催しました【後編】
  3. Reaction Plus:生成物と反応物から反応経路がわかる
  4. 生体医用イメージングを志向した第二近赤外光(NIR-II)色素:…
  5. ムギネ酸は土から根に鉄分を運ぶ渡し舟
  6. 水入りフラーレンの合成
  7. その化合物、信じて大丈夫ですか? 〜創薬におけるワルいヤツら〜
  8. タンパク質の構造を巻き戻す「プラスチックシャペロン」

注目情報

ピックアップ記事

  1. 研究室でDIY!~割れないマニホールドをつくろう~
  2. 有機合成化学協会誌2023年3月号:Cynaropicri・DPAGT1阻害薬・トリフルオロメチル基・イソキサゾール・触媒的イソシアノ化反応
  3. ハンチュ エステルを用いる水素移動還元 Transfer Hydrogenation with Hantzsch Ester
  4. 原子移動ラジカル重合 Atom Transfer Radical Polymerization
  5. コールマン試薬 Collman’s Reagent
  6. 軽くて強いだけじゃないナノマテリアル —セルロースナノファイバーの真価
  7. 奇妙奇天烈!植物共生菌から「8の字」型の環を持つ謎の糖が発見
  8. 「日本研究留学記: オレフィンの内部選択的ヒドロホルミル化触媒」ー東京大学, 野崎研より
  9. アレン・バード Allen J. Bard
  10. CO酸化触媒として機能する、“無保護”合金型ナノ粒子を担持した基板を、ワンプロセスで調製する手法を開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年4月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP