前回:メソポーラスシリカ(1)からの続きです。
前回ご紹介したFSM-16は、カネマイトの層状構造が規則的に折れ曲がることにより多孔質構造を生成(記事の最後を御覧ください)していました。今回は異なる生成機構を経る、そして今日のメソポーラス材料(mesoporous materials)に携わる研究者にとって最も有名なMCM-41について書きたいと思います。
界面活性剤の自己集積(self-assembly)
MCMの紹介の前に、界面活性剤(surfactant)についてざっと確認しておきます。
界面活性剤とはッ!
「…ただの洗剤だろう。」
と揶揄されることも多々、多々、多々、多々ありますが…その本質は親水性と親油性、二つの異なる性質の部分をもつことから、溶液中でその濃度に応じた形状のミセル(micelle)を生成することにあります。この時、ミセルを形成するために必要な濃度(ミセルを形成できる最も低い濃度)のことを臨界ミセル濃度(Critical Micelle Concentration)と呼びます。
ミセルの形状は、
球状ミセル(spherical micelle)
棒状ミセル(rod-like micelle)
ラメラ状ミセル(lamellar micelle)
などがあり、微妙な条件変化(界面活性剤、溶媒、温度、pH、系中に存在するその他全ての物質)に影響されるため、自分の欲しい形状の(テンプレート※後述)ミセルをバシっと用意するのはなかなか骨の折れる作業です。(まぁ具体的な操作はひたすら洗剤を溶かすだけですけど。)
界面活性剤のミセル形状
メソポーラスシリカの合成(2) MCM-41
界面活性剤のおさらいをしたところで、やっと今回の主役の登場です。
1992年、米Mobil社のKresgeらによって報告されたMCM-41(Mobil Crystalline Material)は上述の界面活性剤の特徴を上手く活用したもので、アルキルトリメチルアンモニウム塩の棒状ミセルをStructure Directing Agent(構造の雛形、テンプレート)として利用し、ミセルの周囲でケイ酸塩もしくはSi(OMe)4などを縮合(condensation)させた後、FSMと同様の焼成(calcination)処理をすることで界面活性剤を除去しメソポーラス構造体を得ました[1]。界面活性剤のアルキル鎖の長さを変えることでメソ孔の径を調節できることから、欲しいサイズの孔を持つオーダーメイド・メソポーラスシリカの合成が現実のものとなりつつあります。
(他にもメシチレンの添加によってミセルを膨らませる、というテクニック[2]もあります。
また、2Dヘキサゴナル構造の生成機構に関して、シリカ源を加える前に既に界面活性剤の棒状ミセルにより2Dヘキサゴナルの液晶相ができていて、それをテンプレートとしているのだという説(下図①)があるものの、実際には液晶相には至らない低濃度のミセル溶液からも2Dヘキサゴナル構造を持つ生成物が得られることから、ミセル表面でのシリカ源の縮合と棒状ミセルの配列が協奏的に起こっているとする説(下図②)が広く支持されています。)
Structure Directing Agentによる規則的構造の生成メカニズム
(関連文献[2]より)
何を思ふ
※後発のメソポーラスシリカで特に有名なものに、SBA-15というものがあります。このSBAの由来はもはや生成機構でもMaterialでもなんでもなく、ただの地名だったりします。カリフォルニア州立大学サンタバーバラ校のStuckyらにより報告されたもので…お察し下さい。[3]
後日加筆 FSM-16のメソポーラス構造の生成機構について
その後の研究で、FSM-16の生成機構は「シートの折れ曲がり」ではなく、「一度融解したカネマイト由来のケイ酸が縮合する」MCMと同様の生成機構を経ていることが報告されています[4]。しかしながら、同様にカネマイトをシリカソースとする場合でも酸性条件下ではカネマイトのケイ酸層は保持され、かつ正方形のメソポーラス構造を持つ、KSW-2というマテリアルも報告されています[5]。
また、カネマイトから合成した“MCM-41様”メソポーラスシリカはMCM-41よりも熱的安定性に優れているという報告もあり、たとえ塩基性条件下でもカネマイトは完全に融解するわけではなく、したがって結晶構造も部分的に保たれているようです[6]。
いずれにせよ、当初報告されていたFolded Sheet機構は否定されているということで、筆者の浅学ゆえに古い情報をそのままお伝えしてしまいました。申し訳ありません。
コメントでご指摘してくださったXSさん、どうもありがとうございました。また、この加筆をするに当たりインターネットで偶然発見し読ませていただいた島津省吾先生(千葉大学工学部)の授業用資料(?)でも改めて勉強させていただきました。(直接リンクは貼らずに「見つけた時の画面」だけ貼っておきます。)
関連文献
- Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature, 1992, 359, 710. DOI: 10.1038/359710a0
- Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenkert, J. L. J. Am. Chem. Soc., 1992, 114, 10834. DOI: 10.1021/ja00053a020
- Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D. Nature, 1994, 368, 317. DOI:10.1038/368317a0
- Sakamoto, Y.; Inagaki, S.; Ohsuna, T.; Ohnishi, N.; Fukushima, Y.; Nozue, Y.; Terasaki, O. Microporous and Mesoporous Mater. 1998, 21, 589. DOI: 10.1016/S1387-1811(98)00053-5
- Kimura, T.; Kamata, T.; Fuziwara, M.; Takano, Y.; Kaneda, M.; Sakamoto, Y.; Terasaki, O.; Sugahara, Y.; Kuroda, K. Angew. Chem., Int. Ed. 2000, 39, 3855. DOI: 10.1002/1521-3773(20001103)39:21<3855::AID-ANIE3855>3.0.CO;2-M
- Chen, C. Y.; Xiao, S. Q.; Davis, M. E. Microporous Mater. 1995, 4, 1.DOI: 10.1016/0927-6513(94)00077-9