[スポンサーリンク]

化学者のつぶやき

メソポーラスシリカ(3)

[スポンサーリンク]

前回(メソポーラスシリカ(2))からの続きです。

Surfactant Templating Methodがもたらした進化はズバリ、FSMが層状シリカをシリカ源とすることと違い、縮合可能なシラノール(Si-OH)もしくはアルコキシシリル(Si-OR)基を持ついかなる化合物でもメソポーラスシリカの前駆体となりうる可能性が拓けたことにあります(※1)。

メソポーラス有機シリカ

というわけでもうお気づきかと思いますが、前回の最後にお見せした


図2. トリエトキシシリル?的なさむしんぐs
という化合物。有機化学をたしなんだことのある人であれば37.5刹那ほどの間に

「あー、檜山カップリングの基質?」

と思う方がほとんどかと思いますが、材料化学の人から見ると(というか筆者の場合)これらは真っ先に有機無機ハイブリッド材料を作る前駆体(precursor)であると認識します。同じ化合物一つでも着想が異なるのは異分野間交流の楽しいところです。(1刹那=1/75秒という説があるそうです。wikipedia)
とりわけ図2の右の分子のようなビスアルコキシシリル(二つのアルコキシシランが有機架橋されたタイプの)化合物有機シリカの壁を構築する前駆体として望ましく、逆に図2の左のようなモノアルコキシシリル化合物は、合成した後のシリカ表面にあるシラノール(Si-OH)基との縮合を利用した表面修飾に利用されることが多いです。
このようなメソポーラス有機シリカ材料の呼び方は研究グループによってマチマチですが、前回紹介したMobilのStucky氏らや豊田中研の稲垣伸二氏ら、この分野の先駆者的研究グループが使っているPMO(Periodic Mesoporous Organosilica、あるいは複数形でPMOsという記述が論文で多々見られます。)という呼称を記事中では使うことにします。

メソスケールの規則性と分子レベルの規則性

有機架橋されたアルコキシシランを用いた最初のPMO合成は、1999年に豊田中研の稲垣らのグループにより報告されたもので、前駆体に1,2-bis(trimethoxysilyl)ethaneを用い、塩基性水溶液中でC18TACl(Octadecyltrimethylammonium chloride)をテンプレートに、縮合時の混合比や温度を変えることで2Dおよび3Dヘキサゴナル構造のPMOを合成しました[1](※2)。このPMOは従来のMCMやFSM同様、規則的なメソ多孔質構造を持っていますが、その壁を構築している有機基の(分子レベルの)構造はアモルファスです。

2002年、またも稲垣らが報告した1,4-bis(triethoxysilyl)benzene(まさしく図2,右の化合物です)を前駆体としたPMOは、それまでのPMOと同様にメソ多孔質構造になっていますが、さらに分子レベルでの規則的構造(つまり結晶構造)も持っています[2]。有機架橋部位の芳香環がface-to-face(π-スタッキング)型の芳香環相互作用(※3)により積み重なっているような構造がシミュレートされ、TEM画像やXRD(X線回折、X-Ray Diffraction、※4)の結果もこの構造を支持する結果となっています(※5)。


関連文献[2]より 新しい単語や概念が盛りだくさんでここまで読むのに疲れてしまった方も多いかもしれませんが(文章のせいでしたらすみませんorz)、これでようやくメソポーラス材料の基礎の基礎といったところです。というわけで、ひとまず基礎編(いま名付けました)はこのくらいにしておいて、後日、応用編として続きをアップしていくつもりです。これまでは専ら有機化学およびITネタと文房具が専門(自分はむしろそういう話を読むのが好きですw)の”化学者のつぶやき”ですが、それら以外の分野のある程度まとまったエントリーも重ねていきたいと勝手に意気込んでいます(きのんさんのこちらのつぶやきもありますし)。
今回の3本の記事は筆者のD論のイントロの一部になる予定の内容を掻い摘んだだけなのですが、応用編まで書き終えて基礎知識を共有し、最新の論文ネタを「共感できる」ようになった(と勝手に筆者が思ったら、もしくはつぶやき内の関連記事を参照することで簡単に補完できるようになった)ら、最新論文ネタも投稿していきたいと考えています。(既に共感どころか筆者よりずっと長く専門でやってきている読者の方もいらっしゃるのでしょうが…)

本文中でばらまいたフラグもとい※の回収

※1. 水と反応して即座に脱水縮合してしまうシラノールやアルコキシシランのワークアップや精製時の扱いにくさ(分液は使えない、シリカゲルカラムも望ましくない)を克服すべく、トリアリル(allyl)シランを用いるPMO合成も報告されています[3]

※2. 前回、前々回で紹介したMCMやFSMは焼成することで界面活性剤を除去しましたが、PMOを焼成してしまうと折角の有機基が分解されてしまいます。よって、大過剰量のエタノールに微量の塩酸を加えたもの(1%と記述されている場合もありますが、筆者の経験的には濃塩酸を適当に一滴垂らせばOK)を用いてソックスレー抽出器(Soxhlet extractor)で洗います。洗い込む時間ですが、数日間という論文もあれば、そもそもソックスレーを使わずにただエタノール中室温で2時間かき混ぜるだけという論文もあり、どの程度厳密に洗い出したいかによるようです。

※3. π共役系の広いナフタレンやアントラセンでは安定にface-to-face型の会合体を作る一方、ベンゼンではedge-to-face型(そのまま積み重なって結晶化するとヘリンボーン/Herringbone型になる)が安定。もっとも上記PMOの場合、ベンゼン部位はシリカ部位に対して垂直ではなく傾いているため、offset型と表現したほうが正しいかもしれません[4]

※4. XRDの原理については省きますが、Bragg反射(2dsinθ=nλ)の式をイメージすると分かりやすいと思います。定数や任意の数をまとめて移項するとdがθの逆数に比例する形になるので、X線の入射角が小さい(薄い)ほど二つの面の間隔が大きな、入射角が大きい(より垂直に近い)ほど間隔の狭いスペクトルに対応します。メソポーラス材料の場合、入射角θ=5o(∴2θ=10o)未満にメソ構造由来のピークが見られ、さらに5o<θ<25o付近にピークがあれば分子レベル(オングストローム(A)サイズ)の規則性をもっているとわかります。

※5. 1999年のCorriuらによる報告で、メソポーラスでない有機シリカ材料における分子レベルの規則的配列(結晶化)が示唆されています[5]

関連文献

  1. Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 1999, 121, 9611. DOI: 10.1021/ja9916658
  2. Inagaki, S.; Guan, S.; Ohsuna, T.; Terasak, O. Nature 2002, 416, 304. DOI:10.1038/416304a
  3. (a) Shimada, T.; Aoki, K.; Shinoda, Y.; Nakamura, T.; Tokunaga, N.; Inagaki, S.; Hayashi, T. J. Am. Chem. Soc. 2003, 125, 4688. DOI: 10.1021/ja034691l (b) Aoki, K.; Shimada, T.; Hayashi, T. Tetrahedron: Asymmetry 2004, 15, 1771. DOI: 10.1016/j.tetasy.2004.03.044 (c) Kapoor, M. P.; Inagaki, S.; Ikeda, S.; Kakiuchi, K.; Suda, M.; Shimada, T. J. Am. Chem. Soc. 2005, 127, 8174. DOI: 10.1021/ja043062o
  4. 小林啓二、林直人著、『固体有機化学』、化学同人(2009).
  5. Boury, B.; Corriu, R. J. P.; Le Strat, V.; Delord, P.; Nobili, M. Angew. Chem., Int. Ed. 1999, 38, 3172. DOI: 10.1002/(SICI)1521-3773(19991102)38:21<3172::AID-ANIE3172>3.0.CO;2-3
  6. レビュー論文  (a) Wan, Y.; Zhao, D. Chem. Rev., 2007, 107, 2821. DOI: 10.1021/cr068020s (b)Fujita, S.; Inagaki, S. Chem. Mater. 2008, 20, 891. DOI: 10.1021/cm702271v

 

関連書籍

[amazonjs asin=”4759811435″ locale=”JP” title=”固体有機化学”][amazonjs asin=”4781301894″ locale=”JP” title=”ナノサイエンスが作る多孔性材料 (CMCテクニカルライブラリー―新材料・新素材シリーズ)”]

 

Avatar photo

せきとも

投稿者の記事一覧

他人のお金で海外旅行もとい留学を重ね、現在カナダの某五大湖畔で院生。かつては専ら有機化学がテーマであったが、現在は有機無機ハイブリッドのシリカ材料を扱いつつ、高分子化学に

関連記事

  1. Ru触媒で異なるアルキン同士をantiで付加させる
  2. マダンガミンの網羅的全合成
  3. 添加剤でスイッチするアニリンの位置選択的C-Hアルキル化
  4. アイルランドに行ってきた②
  5. えれめんトランプをやってみた
  6. ファージディスプレイでシステイン修飾法の配列選択性を見いだす
  7. 天然物界70年の謎に終止符
  8. 感染制御ー薬剤耐性(AMR)ーChemical Times特集よ…

注目情報

ピックアップ記事

  1. 第54回天然有機化合物討論会
  2. クマリンを用いたプロペラ状π共役系発光色素の開発
  3. ハイブリット触媒による不斉C–H官能基化
  4. 盗難かと思ったら紛失 千葉の病院で毒薬ずさん管理
  5. 環状ビナフチルオリゴマーの大きさが円偏光の向きを変える
  6. マット・フランシス Matthew B. Francis
  7. 光照射下に繰り返し運動をおこなう分子集合体
  8. コニア エン反応 Conia–Ene Reaction
  9. カネボウ化粧品、バラの香りの秘密解明 高級香水が身近に?
  10. 科学:太古の海底に眠る特効薬

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年9月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー