Total Synthesis of (+)-Manzamine A
Toma,T.; Kita, Y.; Fukuyama, T. J. Am. Chem. Soc. 2010, 132, 10233. doi:10.1021/ja103721s
海洋性アルカロイド・マンザミンAはその特異な5環性主骨格(6-6-5-15-8システム)に加えて、多様な生物活性(細胞毒性、抗菌活性、抗マラリア、駆虫作用、抗炎症、抗HIV)を示すため、世界中の合成化学者の興味を引いて止まない化合物の一つです。
東京大学の福山透教授らは、オリジナルの大員環合成法(Nsケミストリー)を武器に、極めて挑戦的なルートにて、この難関化合物の全合成を達成しました。
彼らのルートでは初期段階であらかじめD環を巻いておき、シクロファン型鍵中間体を経由しています。既報の合成例はどれも合成後半にて15員D環を構築しており、この観点でもまず全くアプローチが異なっています。
これにはもちろん、戦略的意図があります。
シクロファン骨格を持つ化合物の場合、環の外側からしか試薬は近づけないので、面選択性の発現が期待されます(下図)。この特性を利用して、B環上に置換基を生やしながら不斉点の構築を行っている―これが福山ルートの特徴です。
シクロファン中間体自体は、ジアステレオ選択的Diels-Alder反応(B環構築)、福山アミン合成法(D環構築)を用いて上手く作っています。
さてこれ以降は、キー反応のオンパレードであり、圧巻の変換シークエンスが次々と押し寄せます。
まずはリチウムエノラートへのMander試薬、アルキル基の連続導入でB環上の不斉四級炭素を構築、ひき続いてTBHPを用いた求核的エポキシ化によって、もう一つの四置換不斉点も構築しています。
続いてC環構築です。アミン根元の立体は、変形Overman転位、ひき続く還元的アミノ化によって構築されています。還元的アミノ化だけは、環の内側からヒドリドが反応しています。おそらくは近傍のメチルエステルによる試薬配向があるのでしょう。この段階におけるイミンは相当に分解しやすく、隣のエステルとすぐにラクタムを巻いてしまう、と論文中で述べられています。用いられている条件からして、どれもあまり一般的ではありませんし、苦労の跡が伺えます。
そして最終段階で、還元的アミノ化によるA環構築、閉環メタセシス(RCM)による8員E環構築を行い、主骨格を完成させています。
もちろん裏には膨大な検討があるのでしょうが、一連の環構築と立体制御は総じて狙った通りズバズバと決まっている感じです。結果として、自らの強み(Nsケミストリー)を活かした戦略に基づく、極めて独創的なルートに仕上がっています。全くもって「流石」の一言に尽きます。
「溜息が出るような美しい合成」であることは勿論、人の後塵を拝することを良しとしない、世界最高峰の合成化学者としてのプライドに溢れた全合成の一つだと筆者には感じられました。素晴らしい合成です。
関連リンク
- Manzamin A (TotallySynthetic.com)
- 東京大学大学院薬学系研究科 福山研究室