Aiming for the Ideal Synthesisというタイトルの論文がスクリプス研究所のBaran教授らによって報告されました。有機化合物の合成ルートがどのくらい理想的なのかを数値化する、といったちょっと変わった試みがなされていますので紹介します。
Aiming for the Ideal Synthesis
Gaich, T.; Baran, P. S. J. Org. Chem. 2010, ASAP. DOI: 10.1021/jo1006812
合成ルートが理想的かどうかの評価基準である”ideality”は、以下の式によって算出しています。
この式に登場するconstruction reactionとstrategic redox reactionについて簡単に説明します。
①Construction Reaction…いわゆる骨格構築反応であり、炭素-炭素結合あるいは炭素-ヘテロ原子結合を形成する反応。
②Strategic Redox Reaction…目的物に存在する官能基を直接構築する反応であり、不斉酸化・還元やC-H酸化反応。これら以外の反応は以下のように分類されます。
③Nonstrategic Redox Reaction…エステルをアルコールに還元するなどの酸化・還元反応。
④Functional Group Interconversion…官能基変換。
⑤Protecting Group Manipulation…保護基の付け外し。
これだけでは少しわかりにくいので、以前ブログでも取り上げられたビニグロールの全合成を例に挙げてみたいと思います。
まず、ケトンをトリフラートに変換してからPdカップリングを行う2工程は、それぞれ④Functional Group Interconversion、①Construction Reactionに該当します。TBS基の脱保護工程は⑤Protecting Group Manipulationです。四酸化オスミウムによってオレフィンをジオールに変換する工程は、目的物と同じ立体化学を有する水酸基を導入しているため②Strategic Redox Reactionであり、続く位置選択的な水酸基の酸化は③Nonstrategic Redox Reactionとなります。
紙の上では①と②の反応だけで全ての化合物の骨格、官能基を組み立てることができます。一方、③、④、⑤の反応は、官能基の反応性を変えるなどの都合上、やむを得ず行う反応であり、目的とする骨格を形作る上では必要のない反応です。idealityは全工程における①、②の反応の占める割合、すなわち、いかに目的物の形作りに反応を用いているか、を示すパラメーターというわけです。
Baranらは実際に、彼らがこれまでに合成した全ての化合物のidealityを算出しています(論文参照)。ずらりと化合物を並べられてしまうと(しかもほとんどが難関天然物)、多少自慢話のように見えてしまうのは私だけでしょうか(笑)。ここで注意しておかなければならないのは、化合物によって構造の複雑さは異なるため、idealityによって異なる化合物の合成ルートの優劣をつけることはできないという点です。また、精製の容易さや出発原料の値段などの様々な要素が絡んできますので、必ずしもidealityに固執せずに合成ルートを決定する必要があるでしょう。
骨格構築反応後の粗生成物をそのまま保護・脱保護反応に用いるなどのケースでは、1工程のConstruction Reactionが行われたものとして計算しているようで、idealityによる合成ルートの評価には若干曖昧なところもあります。しかしながら、合成ルートの良し悪しの判断は非常に難しく、idealityのような判断基準となる数値があればとても楽しいですし、合成ルートを見直す良い機会となるのではないでしょうか。