[スポンサーリンク]

化学者のつぶやき

UV-Visスペクトルの楽しみ方

[スポンサーリンク]

 

 

新しく合成した化合物を論文に投稿する際、NMRやX線による構造解析の他にも、融点やMass、元素分析などのデータもしっかりと測定します。院生時代、筆者が合成した新規化合物のほとんどには色がついていたので、頻繁にUV-Vis測定も行っていました。

このUVスペクトルデータ、いろんな見方ができると思いますが、注目すべき点の一つとして「最長波長吸収帯」があります。長波長側はエネルギーが低い領域で、「最長波長吸収帯」は分子中で遷移エネルギーが小さなHOMO-LUMOギャップと相関があります。
例えば、HOMO-LUMOギャップが小さく成なる程、最長波長吸収帯はより長波長側にあらわれる、といった具合です。

で、ある時ふと気がついたのですが、波ってエネルギーに換算できるので、UVからHOMO-LUMOギャップを見積もることができるんですね。というわけで、簡単に計算できる方法を以下の式から見積もったのです。

rk1.gif

結果はこんな感じ。A nmという最長波長吸収帯を持つ分子のHOMO-LUMOギャップ(kcal/mol or eV)。

rk2.gif

 

例えば、最長波長吸収帯が400 nmに現れる化合物なら、そのHOMO-LUMOギャップはおよそ71 kcal/mol。

UVは溶液中で測定するので、厳密には、その分子の最安定構造におけるHOMO-LUMOギャップでは無いだろうし、遷移状態の構造も最安定構造とは異なります。分子によっては溶媒にかなり影響されるものもありますので、あくまでも目安程度の式ですが。簡単にまとめると以下のとおり。

rk3.gif

理論計算で最適化して見積もったHOMO-LUMOエネルギー差と、ほど良く相関が見られたのを覚えています。どうでしょう、みなさんの化合物の色とHOMO-LUMOギャップに近い値でしょうか??

また最長波長吸収帯は、化合物の色にも影響を与えます(注:最長波長吸収帯だけではなく、吸収帯全体の位置や吸光係数の大きさに依存します)。

 

Unknown
(画像: wikipediaより)

(紫:380-450nm、青:450-495nm、緑:495-570nm、黄色:570-590nm、橙色:590-620、赤:620-750nm)
「波長」には上図のような感じで色があり、化合物がそこに吸収帯を持つということは、それ
 以外の色を示すことになります。
例えば、300nm~辺りに強い吸収帯があると化合物は黄色、もう少し長波長側で400nm~だと赤~橙、600nm~緑、700nm~で濃青、800nm~黒に近い、といった具合でしょうか。

いろんな化合物の吸収帯の位置や組み合わせ、吸光係数の大きさを覚えると、論文や学会等で、新しい化合物の色を見た時に、
「ははぁ~ん、この辺りに吸収帯があってHOMO-LUMOギャップはこのくらいだな」と地味に楽しむことが出来ます。
と言うわけで、色のある新規化合物を論文に投稿する際には、きちんとUVも取りましょう!

他にも化合物の性質を簡単に見積もれる面白い方法を知っていたら、是非教えて下さい。
有益な情報はみんなで共有しましょう。

 

参考文献

[amazonjs asin=”3527285105″ locale=”JP” title=”UV-VIS Atlas of Organic Compounds”][amazonjs asin=”4431710817″ locale=”JP” title=”有機化合物の構造決定―スペクトルデータ集”]

 

関連記事

  1. Lindau Nobel Laureate Meeting 動画…
  2. Ming Yang教授の講演を聴講してみた
  3. ルドルフ・クラウジウスのこと② エントロピー150周年を祝って
  4. 化学者のためのエレクトロニクス講座~無電解貴金属めっきの各論編~…
  5. 第63回野依フォーラム例会「データ駆動型化学が拓く新たな世界」特…
  6. 前代未聞のねつ造論文 学会発表したデータを基に第三者が論文を発表…
  7. 多種多様な酸化リン脂質を網羅的に捉える解析・可視化技術を開発
  8. 特許情報から読み解く大手化学メーカーの比較

注目情報

ピックアップ記事

  1. フォルスター・デッカー アミン合成 Forster-Decker Amine Synthesis
  2. 書いたのは機械。テキストの自動生成による初の学術文献が出版
  3. 多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性
  4. プリリツェフ エポキシ化 Prilezhaev Epoxidation
  5. 柔軟な小さな分子から巨大環状錯体を組み上げる ~人工タンパク質への第一歩~
  6. ダイキン、特許を無償開放 代替フロンのエアコン冷媒
  7. 「一置換カルベン種の単離」—カリフォルニア大学サンディエゴ校・Guy Bertrand研より
  8. EUのナノマテリアル監視機関が公式サイトをオープン
  9. 研究者のためのCG作成術②(VESTA編)
  10. 平井 剛 Go Hirai

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年4月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー