[スポンサーリンク]

化学者のつぶやき

タングトリンの触媒的不斉全合成

[スポンサーリンク]

tangutorine_1.gif

Catalytic Asymmetric Total Synthesis of Tangutorine
Nemoto, T.; Yamamoto, E.; Franzen, R.; Fukuyama, T.; Wu, R.; Fukamichi, T.; Kobayashi, H.; Hamada, Y. Org. Lett. 2010 ASAP.  doi:10.1021/ol902929a

千葉大薬学部の濱田康正教授らによる合成です。タングトリンは中国産薬用植物・白刺(ハクシ、Nitraria tangutorum)  の葉から単離される細胞毒性・抗癌活性を示すアルカロイドです。

ラセミ体での全合成は報告されているものの不斉全合成は未達成であり、今回の報告では彼らが独自開発した不斉触媒反応を武器に、初の不斉全合成へとアプローチし、見事達成しています。


この多環性骨格にどうアプローチして行くか――トリプタミンが入手容易であること、C-N結合がC-C結合に比べて切りやすいことを考えると、おそらくPictet-Spengler環化を鍵とする、下記のような収束的逆合成を、即座に思いつくことでしょう。このルート設定をすれば、どのように右パートの不斉点を制御するか、ということが一つキーポイントになります。

tangutorine_2.gifこの点で彼らは、独自開発したPd-DIAPHOX触媒系[1]を用いる、Baylis-Hilmann付加体への不斉アリル位アミノ化反応[2]を武器としています。
tangutorine_3.gifDIAPHOXはアスパラギン酸から容易に大量合成される不斉配位子です。これはマスクされた形のリン配位子とみなすことができます。シリル化剤(BSA)を加えることで異性化が起こり、キラルホスフィンが系中生成してくる設計になっています。

tangutorine_4.gifリン化合物は得てして酸素に弱く、取扱い困難なものも少なくありません。一方でDIAPHOXのようなホスフィンオキシド型化合物は安定であり、特別なケアを必要とせず合成・保存可能です。もちろんメリットがある一方で、BSAなど本来なくても良いはずの試薬を過剰量加えねばなりません。試薬間干渉
によって適用範囲が狭まってしまう可能性も考慮が必要です。

ともあれ、アミン部根元の立体は、Pd-DIAPHOX触媒による不斉アミノ化反応にて制御可能です。その後すこしばかりの変換を得て、Sharpless酸化→ヒドリドによるエポキシド開環によってとなりの炭素不斉点を構築しています。

tangutorine_5.gifPictet-Spengler環化では、残念ながら立体制御に難があったようです。undesiredな異性体も迂回ルートで最終物に持っていけるとのことですが・・・ここが綺麗に決まっていれば・・・惜しいところですね。

tangutorine_6.gif全体的にトリッキーな変換は多くありませんが、基本が間違いなく押さえられたルートと見受けられました。

ところどころ官能基変換が冗長ですが、これは得てして不斉触媒適用型の全合成に見られがちなこととも思えます。
仮にですが、上記逆合成スキーム中央で示したようなものに類する化合物に対して、不斉アミノ化反応が適用できるならば、官能基変換は最小限に抑えられるように思います。

つまりは“適用基質の制限”がその根源的理由として考えうるわけですね。

この事実と合成ルートを眺めて、「ルートが汚くなりがちだから不斉触媒は使えない」とネガティブに見なしてしまうか、「このポイントを改善すればとても斬新なルートに出来る」とポジティブに捉えるか・・・このあたりは「何を目指しての全合成なのか」という、研究者のヴィジョン次第と言えそうです。

いずれにせよ、「不斉触媒にすり寄った基質デザイン」を考えなくて良いほど一般性ある実用的触媒反応というのは、今後とも開発が望まれるものの一つといえそうですね。

  • 関連文献
[1] (a) Nemoto, T.; Matsumoto, T.; Masuda, T.; Hitomi, T.; Hatano, K.; Hamada, Y. J. Am. Chem. Soc. 2004, 126, 3690. DOI: 10.1021/ja031792a (b) Nemoto, T.; Masuda, T.; Matsumoto, T.; Hamada, Y. J. Org. Chem. 2005, 70, 7172. DOI: 10.1021/jo050800y

[2] Nemoto, T.; Fukuyama, T.; Yamamoto, E.; Tamura, S.; Fukuda,
T.; Matsumoto, T.; Akimoto, Y.; Hamada, Y. Org. Lett. 2007, 9, 927. DOI: 10.1021/ol0700207

  • 関連リンク

千葉大薬学部・濱田康正研究室

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 米国版・歯痛の応急薬
  2. 糖のC-2位アリール化は甘くない
  3. 3Mとはどんな会社? 2021年版
  4. 【ナード研究所】新卒採用情報(2025年卒)
  5. 実験ワイプとタオルをいろいろ試してみた
  6. 腎細胞がん治療の新薬ベルツチファン製造プロセスの開発
  7. 有望な若手研究者を発掘ー研究者探索サービス「JDream Exp…
  8. 「無保護アルコールの直截的なカップリング反応」-Caltech …

注目情報

ピックアップ記事

  1. マテリアルズ・インフォマティクスの推進成功事例セミナー-なぜあの企業は最短でMI推進を成功させたのか?-
  2. varietyの使い方
  3. 理系のためのフリーソフト Ver2.0
  4. 大川原化工機株式会社のはなし
  5. 未来のノーベル化学賞候補者
  6. 2008年12月人気化学書籍ランキング
  7. as well asの使い方
  8. 有機合成化学協会誌2017年11月号:オープンアクセス・英文号!
  9. アーサー・C・コープ賞・受賞者一覧
  10. アルキンメタセシス Alkyne Metathesis

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年2月
1234567
891011121314
15161718192021
22232425262728

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP