[スポンサーリンク]

化学者のつぶやき

ホウ素は求電子剤?求核剤?

[スポンサーリンク]

原子番号5番のホウ素(B)は耐熱ガラスやホウ酸ダンゴなどでおなじみです。有機合成化学においては鈴木カップリングの中枢を担う大事な元素ですね。

有機化学の反応は、簡単に言ってしまえば求核剤と求電子剤との反応です。
炭素や窒素、酸素などの元素は、求電子剤・求核剤の両方がそれぞれ多数開発されて今日の複雑な合成が可能になっているわけですが、ホウ素はずっと求電子剤でした。
教科書にも『空のp軌道があるのでホウ素は求核剤の攻撃の標的になっている(ウォーレン有機化学下巻)』とあるとおり、この空の軌道がある限りホウ素は求電子剤であると考えられてきました。

今回はその常識を打ち破るホウ素化合物の紹介なのですが、その前に過去に報告されている3種類のホウ素求核剤をまずはご覧ください。

 ホスフィン安定化ボリルアニオン

ひとつは今元らによるホスフィンボランのリチオ化物。トリメチルクロロシランやベンズアルデヒドといった求電子剤に対して、ホウ素が求核剤として攻撃します。これ自体は単離されていないので構造は不明ですが、ホウ素はsp3混成軌道の状態になっていると考えられます。[1]

ボリルリチウム

もうひとつは瀬川・山下・野崎らによるボリルリチウムです。この分子は結晶構造からホウ素はsp2混成軌道をとっていて、空のp軌道があるにもかかわらずホウ素が求核剤として様々な求電子剤や金属と反応する希有な化合物です。理由はホウ素とリチウムとの間の結合が限りなくイオン結合的で、ボリルアニオンとしての性質に近いからであると説明されています。[2]

ボリレン架橋マンガン錯体

今回紹介するドイツのBraunschwaigらの過去の成果になるのですが、ホウ素が2つのマンガンに挟まれたsp混成を取る錯体も、ヨウ化メチルと反応してメチル基がホウ素に付加することから、このホウ素も求核的であると言えます。[3]

さて、それでは今回Braunschwaigらが合成したホウ素求核剤はどんなものなのでしょうか。[4]

NHC安定化πボリルアニオン

ホウ素はボロールという5員環を構成しており、sp2混成です。ホウ素はもうひとつ共有結合が作れますが、共有結合ではなくNヘテロ環カルベンによる配位を受けています。このままではホウ素上に電子が1コ余ったラジカルですが、さらに電子を与えることでボロール上に電子が広がったアニオンになっています。つまり、sp2のホウ素に対して、もともと空だったp軌道に電子を2コ入れてしまったコトになります。それを、カルベンの配位やボロールの芳香族性といった手法を用いて安定化しています。
この化合物に対してヨウ化メチルを反応させると、ホウ素が求核剤として攻撃してメチル化が起きました。
「本来求電子的であるはずのホウ素のp軌道を求核的に反応させた」という、これこそまさに極性転換ですね。


 

電子状態や結合をデザインすることで、反応性を自在に変化させる。これだけでも魅力的な研究ですが、それから得られる新しい反応性によってこれまで合成不可能であった化合物達が合成できるようになり、材料や医薬など様々な分野に発展することを期待しています。

参考文献

  1. Imamoto, T.; Hikosaka, T. J. Org. Chem199459, 6753-6759.
  2. Segawa, Y.; Yamashita, M.; Nozaki, K. Science2006314, 113-115. J. Am. Chem. Soc. 2008130, 16069-16079.
  3. Braunschweig, H.; Burzler, M.; Dewhurst, R. D.; Radacki, K. Angew. Chem. Int. Ed. 200847, 5650. DOI: 10.1002/anie.200801848
  4. Braunschweig, H.; Chiu, C. W.; Radacki, K,; Kupfer, T. Angew. Chem. Int. Ed. 2010, ASAP. DOI: 10.1002/anie.200906884
Avatar photo

タスマニアデビル

投稿者の記事一覧

博士(工学)。大学勤務。
世界最大の肉食有袋類 絶滅危惧種 生息地:有機金属化学 主食:不安定な結合 体長:2.291Å 体重:Rind3個分

関連記事

  1. gem-ジフルオロアルケンの新奇合成法
  2. 光電変換機能を有するナノシートの合成
  3. 【速報】2017年ノーベル化学賞は「クライオ電子顕微鏡の開発」に…
  4. 日本プロセス化学会2019 ウインターシンポジウム
  5. 銅触媒によるアニリン類からの直接的芳香族アゾ化合物生成反応
  6. 有機合成化学協会誌2024年4月号:ミロガバリン・クロロププケア…
  7. 95%以上が水の素材:アクアマテリアル
  8. 重いキノン

注目情報

ピックアップ記事

  1. 化学大手2014年4–9月期決算:概して増収増益
  2. 触媒表面に吸着した分子の動きと分子変換過程を可視化~分子の動きが触媒性能に与える影響を解明~
  3. 第2回慶應有機合成化学若手シンポジウム
  4. 根岸クロスカップリング Negishi Cross Coupling
  5. 小林 洋一 Yoichi Kobayashi
  6. ボンビコール /bombykol
  7. ジョージ・オラー George Andrew Olah
  8. チアミン (thiamin)
  9. 小松紘一 Koichi Komatsu
  10. ギンコライド ginkgolide

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年2月
1234567
891011121314
15161718192021
22232425262728

注目情報

最新記事

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

モータータンパク質に匹敵する性能の人工分子モーターをつくる

第640回のスポットライトリサーチは、分子科学研究所・総合研究大学院大学(飯野グループ)原島崇徳さん…

マーフィー試薬 Marfey reagent

概要Marfey試薬(1-フルオロ-2,4-ジニトロフェニル-5-L-アラニンアミド、略称:FD…

UC Berkeley と Baker Hughes が提携して脱炭素材料研究所を設立

ポイント 今回新たに設立される研究所 Baker Hughes Institute for…

メトキシ基で転位をコントロール!Niduterpenoid Bの全合成

ナザロフ環化に続く二度の環拡大というカスケード反応により、多環式複雑天然物niduterpenoid…

金属酸化物ナノ粒子触媒の「水の酸化反応に対する駆動力」の実験的観測

第639回のスポットライトリサーチは、東京科学大学理学院化学系(前田研究室)の岡崎 めぐみ 助教にお…

【無料ウェビナー】粒子分散の最前線~評価法から処理技術まで徹底解説~(三洋貿易株式会社)

1.ウェビナー概要2025年2月26日から28日までの3日間にわたり開催される三…

第18回日本化学連合シンポジウム「社会実装を実現する化学人材創出における新たな視点」

日本化学連合ではシンポジウムを毎年2回開催しています。そのうち2025年3月4日開催のシンポジウムで…

理研の一般公開に参加してみた

bergです。去る2024年11月16日(土)、横浜市鶴見区にある、理化学研究所横浜キャンパスの一般…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー