“Total Synthesis of Palau’amine”
Seiple, I. B.; Su, S.; Young, I. S.; Lewis, C. A.; Yamaguchi, J.; Baran, P. S. Angew. Chem. Int. Ed. 2009, 49, 1095. DOI: 10.1002/anie.200907112
海洋性アルカロイドPalau’amineは、見ての通り多数の不斉点と、グアニジン・ヘミアナール・アルキルクロライドなどの高反応性官能基が、トランス縮環型シクロペンタンコアに高密度集積した構造を持ちます。
前々から全合成界における最難関化合物の一つと言われてきており、世界中の天然物合成ラボ(少なくともその数15以上!)の間で合成競争がなされていました。
ごく最近、とうとうこのこの超難関天然物の全合成が達成されました。それを成し遂げたのはやはりというか、若き俊英Phil Baranでした。
逆合成戦略
彼らが既に全合成を達成しているPalau’amineの類縁体、AxinellamineA/B[1], Massadine[2]とで構造比較をしてみると、ピンク色で示した共通の骨格が見えてきます。この骨格部はconnectivityが異なるだけで、酸化度や立体配置がかなり似通っていることが、お分かり頂けると思います。
ゆえに類縁体群すべてにアプローチできる汎用ストラテジーを考えるとするならば、ピンク以外の余分な飾りを取り除いた中間体(上段中央) に向かうルート設定にするのが、必然の流れと言えそうです。アカデミック合成ルートというのは、単に「一個作ってオシマイ」で終わらないよう、こういったこともちゃんと視野に入れて組まれています。
これほどに高極性かつ酸化度の高い化合物になってくると、よほど巧妙な逆合成解析・ルート設定をしない限り、終盤工程にて余分な変換で堂々巡りを繰り返すハメになり、目的物にたどり着けません。最終ステップの脱保護が上手く行かなかったがため、ルートを全部練り直し、なんて話は実に枚挙に暇がありません。合成計画・ストラテジーはほぼ全てといえるぐらい重要です。
逆合成解析を行うにあたっては、
- 基盤となる炭素骨格はなるべく合成前半で組みあげる
- 合成を進めるに従って、極性官能基の数と酸化度を増やしていく
ようなルートに仕上げて行くのがセオリーとなります。炭素-炭素結合は作りにくく壊れにくいこと、極性官能基の保護・脱保護を最小限とし総工程数を減らすこと、有機化合物としての取扱・変換を容易にすること、などがその理由となります。
このセオリーに基づき、上段中央の中間体から余分な官能基・酸化度をさらに減らしていくと、緑色で示した基本炭素骨格を持つ、共通中間体が浮かび上がります。
これほどまでに簡略化を経た中間体ですら、一見して一筋縄に合成出来なさそうです。まったくハンパない難易度の高さです。(共通中間体合成の詳細については、関連論文を参照ください。)
実際の合成:ハイライト
さて、上記2を実行に移すには、「化合物の酸化度を、合成後半でも自在調節できる変換」が必要です。このような化学選択的変換は今もって高い需要があり、世界各所で研究開発が続けられています。
とりわけPalau’amineと類縁化合物群の合成において有効だった変換は、彼らが独自開発したピコリン酸銀(II)による酸化反応[1b, 2]です。環状グアニジン部のみ選択的に酸化度を上げることができるという、強力な手法となっています。
Palau’amineは他の類縁体と異なり、左下のピロールアミドと右下のアミノイミダゾール部位を、酸化度を調節しつつ連結しなくてはなりません。しかし、放っておくと勝手に巻くような位置にはとてもなさそうです。そもそも5員環同士がトランス縮環した骨格を作ること自体、現在の技術をしても極めて難しいことなのです。
やはり、相応に工夫が必要となったようです。彼らは以下の通り、最初にグアニジン環-ピロール結合を作った後にマクロラクタムを巻かせ、最終的に望みの縮環構造に導くストラテジーをとっています。
どうやらグアニジンは、保護せず塩として取り扱うと、むしろ反応しづらくなるもののようです。そしてアミノイミダゾール部に臭素を入れたあと、金属触媒無しでピロールを導入しています。理屈の上では可能なんでしょうが・・・Buchwald条件などでは上手く行かなかったのでしょう。
これほどまでに複雑かつ高反応性の化合物を壊さずに、思ったところにズバズバ反応させていること自体、驚愕というほかありません。紙の上で考えてみるだけなら簡単ですけど、実際やってしまう発想が凄い。いやはやどれほど膨大な検討をしたのか、全く想像を超えています。収率は良くないといっても、こんなcrazy compoundですから、やむを得ないのでしょうね。
以下余談ですが、このペーパーのreferenceには、研究内容と同じぐらいの壮絶さを感じました。Palau’amine合成研究だけで30以上の査読付き論文、Ph.D.thesisが25本も集められています。また12月17日に受理されて、審査後VIPに選定、31日にオンラインに出る(14日!?)ってどういうことだ?と思います。それだけスムーズな審査であり、なおかつAngewandte誌にとって大事な論文でもあったのでしょう。
関連文献
- (a) Yamaguchi, J.; Seiple, I.B.; Young, I.S.; O’Malley, D.P.; Maue, M.; Baran, P.S. Angew. Chem. Int. Ed. 2008, 47, 3578. doi: 10.1002/anie.200705913 (b) O’Malley, D.P.; Yamaguchi, J.; Young, I.S.; Seiple, I.B.; Baran, P.S. Angew. Chem. Int. Ed. 2008, 47, 3581. doi: 10.1002/anie.200801138
- Su, S.; Seiple, I.B.; Young, I.S.; Baran, P.S. J. Am. Chem. Soc. 2008, 130, 16490. DOI: 10.1021/ja8074852
- Kock, M.; Grube, A.; Seiple, I. B.; Baran, P. S. Angew. Chem. Int. Ed. 2007, 46, 6586. doi: 10.1002/anie.200701798
関連リンク
- Finally, Palau\’amine ( Latest News Chemical & Engineering News)
- Palau’amine Reconsidered (C&EN)
- Scripps Research Team Wins Global Race to Achieve Landmark Synthesis of Perplexing Natural Product (Health Candal.com)
- Palau’amine (Totallysynthetic.com)
- Organici kraken spons(C2W – C2W)
- Palau’amine passes the post(Chemistry World Blog)
- Chemists crack complex compound(Nature News)