[スポンサーリンク]

一般的な話題

ケージ内で反応を進行させる超分子不斉触媒

[スポンサーリンク]

Raymond_asymSupra_3.gif

Enantioselective Catalysis of the Aza-Cope Rearrangement by a Chiral Supramolecular Assembly
Brown, C. J.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2009, ASAP. doi:10.1021/ja906386w

現在の化学界におけるホットトピック・超分子ケージ錯体。
「つぶやき」でも幾つか先端の研究例を紹介していますが、いずれの例でも外界から隔絶された特異空間を活用した化学が展開されています。

Kenneth Raymond(UC Berkeley)らのグループは今回、それをアザ-Cope転位の不斉触媒として用いることに成功しました。

  • 触媒原理

以下に示す四面体形状をもつアニオン性超分子錯体は、アザ-Cope転位反応の触媒として働きます。これは既にアキラルな系で示されています[1]。触媒非添加条件に比べ、約1000倍の反応加速効果があるとされます。

complex_raymond.gifこの超分子触媒系では、錯体が作り出す空間内に基質を取り込み、特定の配座に強制誘導してやることが反応促進のカギとなっています。

すなわち、基質が錯体内部に取り込まれると、狭いスペースに押し込められるために、曲がった配座をとることを余儀なくされます。Cope転位に必要となる六員環遷移状態に近い形状となり、すぐさま反応が進行します。反応後は、系中に存在するアンモニウムカチオンと置き換わり、基質が放出されます。放出された基質は加水分解を受けて中性分子となり、アニオン性ケージにはもはや取り込まれなくなります(下図)。

Raymond_asymSupra_1.gif
一方、ホストに取り込まれない状態では、主に直線的に伸びた形で存在しています。六員環遷移状態を取るのに要するエネルギー障壁が大きく、触媒のある場合に比べ反応は遅くなる、という理屈です。

特定の官能基に作用する、よくある酸/塩基型の活性化形式ではないため、原理的に大変穏和な触媒反応となり得るのも特徴です。

  • アキラルからキラルへ
さて、この超分子ケージを構成要素たる配位子自身は、キラリティを持たない(アキラルな)ものです。しかし面白いことに、ひとたび錯形成がなされるとキラリティを持つようになります。

complex_LDchirality.gif
以前の報告[1]では、ラセミ錯体(ΔΔΔΔ錯体とΛΛΛΛ錯体の1:1混合物)を用いて反応を行っていましたが、今回の報告では両エナンチオマーを分離して用い、冒頭スキームのような不斉反応へと展開しています。錯体ホスト内でのキラル空間で転位反応が起こるため、エナンチオ選択性が発現してきます。

やはり「キラル錯体をどのように調製・単離精製するか」という点に苦心の跡が見られるようです。ラセミ体で合成した跡、そのあとキラルな四級アンモニウム塩((-)-N‘-methylnicotinium iodide)をケージに取り込ませてジアステレオマー錯体とした後に、イオン交換クロマトグラフィにて分離しています。泥臭いやりかたですが、そういう側面はどんな仕事にもあるものですね。

※各種模式図はRaymond Groupもしくは冒頭論文より引用・改変
  • 関連文献
[1] (a) Fiedler, D.; Bergman, R. G.; Raymond, K. N. Angew. Chem. Int. Ed. 2004, 43, 6748. (b) Fiedler, D.; van Halbeek, H.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2006, 128, 10240. (c) Hastings, C. J.; Fiedler, D.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2008, 130, 10977.

  • 関連リンク

Raymond Group UCバークレイ・レイモンド研究室

Ken Raymond  – Wikipedia

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 第26回ケムステVシンポ「創薬モダリティ座談会」を開催します!
  2. 好奇心の使い方 Whitesides教授のエッセイより
  3. 【速報】2010年ノーベル物理学賞に英の大学教授2人
  4. 4歳・2歳と学会・領域会議に参加してみた ①
  5. 648個の誘導体を合成!ペプチド創薬の新手法を開発
  6. カルボン酸からハロゲン化合物を不斉合成する
  7. 論文の自己剽窃は推奨されるべき?
  8. アルデヒドのC-Hクロスカップリングによるケトン合成

注目情報

ピックアップ記事

  1. 磁気ナノ粒子でガン細胞を選別する
  2. エルゼビアからケムステ読者に特別特典!
  3. 炭素-炭素結合活性化反応 C-C Bond Activation
  4. 有機合成テクニック集[ケムステ版]
  5. 光学分割 / optical resolution
  6. 【クリックは完了. よし壊せ!】イミノカルベノイドによる渡環および 1,3-挿入 Iminocarbenoids Derived from Triazoles for Transannulations/1,3-Insertions
  7. 研究助成金を獲得する秘訣
  8. 新コース開講! 東大発の無料オンライン英語講座!
  9. ペラミビル / Peramivir
  10. 中高生・高専生でも研究が学べる!サイエンスメンタープログラム

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP