[スポンサーリンク]

化学者のつぶやき

ラウリマライドの全合成

[スポンサーリンク]

 

Evaluating Transition-Metal-Catalyzed Transformations for the Synthesis of Laulimalide
Trost, B. M.; Amans, D.; Seganish, W. M.; Chung, C. K. J. Am. Chem. Soc. 2009, ASAP doi:10.1021/ja907924j

Barry Trostらのグループ発、またもや大物全合成の報告です。

毎度のごとく独自開発した反応が盛りだくさんで、独自のこだわりが伺える合成に仕上がっています。


Trostグループから報告される全合成には、ルテニウム触媒を用いるアルケン-アルキン間のカップリング反応[1]が頻用されています。今回はこの反応にスポットをあてて紹介してみます。

laulimalide_3.gif
これは末端二重結合・三重結合という、ユビキタスな(どこにでもある)官能基同士で進行する反応です。また、極めて高い化学選択性・官能基受容性を持つため、全合成後半ですら普通に用いることが可能です。しかも交差反応形式でもあるがゆえ、ある面でオレフィンメタセシス以上のポテンシャルをもつ反応と言っても差し支えありません。

今回のラウリマライド合成においては、以下に示すような大環状合成に効果的に用いられており、もっとも目を引くステップとなっています。

laulimalide_2.gif
このアルケン-アルキンカップリングには、アルケンの二重結合が一つ内側へと移動した、決まった位置に内部オレフィンが得られる、というユニークな特性があります。

Trost教授はいずれの例においても、この特性を大変に上手く使って合成ルートを組んでいます。

たとえば今回の例では、大環状合成後にアリルアルコール(黄色で示した部分)ができるよう、アルコール官能基を隣接位置させた基質でカップリング反応を行っています。これによって反応後、多数存在する他の2重結合からこの部分だけを区別できるように設計してあるわけです。

実際このアリルアルコールは、最終段階の化学変換の足がかりとして、最大限に活用されています。すなわち、Osborn触媒[2]によるアリルアルコール転位、立体反転、引き続くSharpless不斉エポキシ化によって、最後のエポキシドを直接的に導入しています。

laulimalide_4.gif
他のステップでも金属触媒を用いる変換が各所で用いられています。それぞれ詳しく調べると、かなり勉強になって良いと思えます。

laulimalide_5.gif遷移金属を使う変換は、取り扱い・残留金属除去の難点、反応機構の難しさ、価格などの理由から、合成化学者からは実のところ敬遠されがちにも思います。

しかしこのように、他の方法では実現できない優れた変換を可能にする一つの手法でもあります。見かける機会があるたびに、少しずつでも勉強しておくのは悪くないことと思えます。

Trostグループから報告される全合成は、自前で開発した触媒を無理矢理組み入れているわけではなく、金属触媒の特性を十分理解し、かつ芯のある哲学に則ってそれを使っているように感じられます。

そういう「全合成の裏に透けて見える思想」こそが、学びがいのある味わい深いポイント、でしょうかね。

 

関連文献

[1] (a) Trost, B. M.; Frederiksen, M. U.; Rudd, M. T.  Angew. Chem. Int. Ed. 2005, 44, 6630. doi: 10.1002/anie.200500136  (b) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067. DOI:10.1021/cr000666b

[2] Bellemin-Laponnaz, S.; Gisie, H.; Le Ny, J.-P.; Osborn, J. A. Angew. Chem. Int. Ed. Engl. 1997, 36, 976. doi:10.1002/anie.199709761

 

関連書籍

[amazonjs asin=”480790681X” locale=”JP” title=”有機合成のための遷移金属触媒反応”][amazonjs asin=”3527306927″ locale=”JP” title=”Ruthenium in Organic Synthesis”]

 

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 三中心四電子結合とは?
  2. クロう(苦労)の産物!Clionastatinsの合成
  3. 微小な前立腺がんを迅速・高感度に蛍光検出する
  4. 今こそ天然物化学☆ 天然物化学談話会2021オンライン特別企画
  5. ケミストリー四方山話-Part I
  6. バイエルスドルフという会社 ~NIVEA、8×4の生みの親~
  7. 「関東化学」ってどんな会社?
  8. もっと化学に光を! 今さらですが今年は光のアニバーサリーイヤー

注目情報

ピックアップ記事

  1. 持続可能性社会を拓くバイオミメティクス
  2. シス優先的プリンス反応でsemisynthesis!abeo-ステロイド類の半合成
  3. 危険ドラッグ:創薬化学の視点から
  4. 18万匹のトコジラミ大行進 ~誘因フェロモンを求めて①~
  5. 【7/28開催】第3回TCIオンラインセミナー 「動物透明化試薬ウェビナー CUBICの基礎と実例」
  6. ノーベル賞親子2代受賞、コーンバーグさんが東大で講演
  7. コラボリー/Groups(グループ):サイエンスミートアップを支援
  8. 単結合を極める
  9. 隣接基関与 Neighboring Group Participation
  10. 下嶋 敦 Shimojima Atsushi

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー