[スポンサーリンク]

化学者のつぶやき

(+)-ミンフィエンシンの短工程不斉全合成

[スポンサーリンク]


Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine
Jones, S. B.; Simmons, B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 13606. doi:10.1021/ja906472m

 

プリンストン大学・MacMillanらによる報告です。

(+)-Minfiensineは上図に示すように、特徴的な高度縮環構造をもつアルカロイドであり、2005年のOvermanらによる報告[1]を始めとして幾つかのグループから不斉全合成が達成されています。

今回MacMillanらは、この複雑な骨格に対し、独自開発したMacMillan触媒を用いるアプローチを取っています。すなわち不斉Diels-Alder反応から始まるカスケード環化反応、引き続くラジカル環化反応によって、含窒素縮環構造を効果的に構築しています。

それでは詳しく見ていきましょう。


minfiensine_2.gif

まず彼らは硫黄官能基をもつトリプタミン誘導体とプロピナールを基質として用い、MacMillan触媒を用いる不斉Diels-Alder反応条件に伏しています。付加体は弱酸反応条件下において生じるイミニウムを経由してさらに環化を起こします。類似のピロロインドリン骨格の不斉合成は、以前にも彼らのグループから報告されています[2]が、今回の反応はその発展系と言えます。MacMillan触媒は付随するブレンステッド酸によって少々挙動が異なってくることが知られているのですが、今回の系ではトリブロモ酢酸付加体が良好な結果を与えたようです。

最終的にアルデヒド部位を還元処理することで、縮環ピロロインドリン骨格を96%eeという高不斉収率で得ています。この複雑中間体は、市販化合物からわずかに3段階で合成可能ということに・・・まったく驚くべき反応です。

さて、硫黄官能基を持った基質で反応を行った理由は、後のステップでこの部分をラジカル環化の足がかりとするためです。炭素伸張を行った後、通常の(n-Bu)3SnHを試薬として反応を行っていますが、どうやら上手くいかなかった模様。代わりに(t-Bu)3SnHを用いる条件[3]が機能したということですが・・・よくこんな試薬を見つけてくるモノだなぁと思います。

また、この種の環化反応には特に必要ないはずなのに、わざわざt-BuS-基をもつ基質で反応を行っているというのも着目すべき点に思えます。メチルアルキン型の基質で反応を行う方がより短工程になるはずです(実際)。実際彼らも、当初はそういう試行錯誤を行っていたようですが、結局は生成物がE/Z異性体の混合物になってしまったということです。


minfiensine_3.gif

このように論文を読めば、節々上手くいかなかった点を節々感じ取ることはできます。しかし外観を眺めてみると、各ステップは総じて、あまりに綺麗に進むべくして進んでいるようにしか見えません。結局つまずきは主要ストラテジー変更まで行かない程度にとどまっています。戦略的に見て全てが想定範囲内にしか見えない、というのが甚だ恐ろしい。

これだけ思った通りのことがズバズバ決まればさぞや爽快だろうなぁ・・・と、まったくため息が出るばかりの合成といえます。

 

関連文献

[1] (a)  Dounay, A. B.; Overman, L. E.; Wrobleski, A. D. J. Am. Chem. Soc. 2005, 127, 10186. doi: 10.1021/ja0533895 (b) Dounay, A. B.; Humphreys, P. G.; Overman, L. E.; Wrobleski, A. D. J. Am. Chem. Soc. 2008, 130, 5368. DOI: 10.1021/ja800163v
[2] Austin, J. F.; Kim, S.-G.; Sinz, C. S.; Xiao, W.-J.; MacMillan, D. W. C. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5482. doi: 10.1073/pnas.0308177101
[3] Bachi, M. D.; Bar-Ner, N.; Melman, A. J. Org. Chem. 1996, 61, 7116. doi: 10.1021/jo9607875

 

 関連リンク

The MacMillan Group

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. プレプリントサーバー:ジャーナルごとの対応差にご注意を【更新版】…
  2. 分子集合の力でマイクロスケールの器をつくる
  3. 優れた研究者は優れた指導者
  4. 2つのアシロイン縮合
  5. SNS予想で盛り上がれ!2023年ノーベル化学賞は誰の手に?
  6. シグマ アルドリッチ構造式カタログの機能がアップグレードしたらし…
  7. 高純度フッ化水素酸のあれこれまとめ その1
  8. YMC-DispoPackAT 「ケムステを見た!!」 30%O…

注目情報

ピックアップ記事

  1. 鉄カルベン活性種を用いるsp3 C-Hアルキル化
  2. 高温焼成&乾燥プロセスの課題を解決! マイクロ波がもたらす脱炭素化と品質向上
  3. 「カルピス」みらいのミュージアム
  4. 誰かに話したくなる化学論文2連発
  5. マイクロ波とイオン性液体で単層グラフェン大量迅速合成
  6. ペプチドのらせんフォールディングを経る多孔性配位高分子の創製
  7. 中西 和樹 Nakanishi Kazuki
  8. アルファリポ酸 /α-lipoic acid
  9. 留学生がおすすめする「大学院生と考える日本のアカデミアの将来2020」
  10. PACIFICHEM2010に参加してきました!①

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

早稲田大学各務記念材料技術研究所「材研オープンセミナー」

早稲田大学各務記念材料技術研究所(以下材研)では、12月13日(金)に材研オープンセミナーを実施しま…

カーボンナノベルトを結晶溶媒で一直線に整列! – 超分子2層カーボンナノチューブの新しいボトムアップ合成へ –

第633回のスポットライトリサーチは、名古屋大学理学研究科有機化学グループで行われた成果で、井本 大…

第67回「1分子レベルの酵素活性を網羅的に解析し,疾患と関わる異常を見つける」小松徹 准教授

第67回目の研究者インタビューです! 今回は第49回ケムステVシンポ「触媒との掛け算で拡張・多様化す…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP