The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy.
L. Gross et al. Science 2009, 325, 5944. DOI: 10.1126/science.1176210
そこら中にある分子の形が、人間の目で直接見えるようになったら――化学者が長年抱いていたこの夢が、徐々に現実のものとなりつつあります。
このほどIBMの研究者によって、ベンゼン環が5つつながった分子・ペンタセン(pentacene)の顕微鏡像が撮影されました。上図のごとく、化学結合まで鮮明に観測され、分子の形が分子模型を見るかのごとくはっきり分かります。
彼らは非接触型原子間力顕微鏡(Non-contact Atomic Force Microscopy; NC-AFM)という分析機器を用い、この画像の撮影に成功しました。
AFMの原理自体は、それほど難しいものではありません。
試料表面を探針(tip)でなぞると、試料との間に原子間力(引力)が生じます。その力の大きさをカンチレバー(Cantilever)の”たわみ”とし
て検出します。たわみ具合はレーザー光の反射角から精密に見積もることができます。このようにして、試料表面の凹凸を画像化しているのです(下図)。
同様
の測定ができる走査型電子顕微鏡(SEM)、走査型トンネル顕微鏡(STM)と比較して、導電性のない材料にも適用可能な利点を持ちます。通常、導電性に乏しい有機化合物を観測するためには、重要な特性といえます。
(画像:Aglient.com)
NC-AFMでは、探針を上下振動させて走査し、探針-試料間距離に応じて変化する振動パラメータ(振幅、振動数、位相など)の変化を検出します。分解能などさまざまな点で接触型よりも優れており、既に原子レベルの分解能を誇ります。
しかし冒頭画像のごとく化学結合までをも可視化するには、それ以上、すなわちサブアトミックスケールにまで分解能を上げねばなりません。
IBMグループは、一酸化炭素(CO)を先端に結合させた探針を使うことで、この問題を解決しました。
AFMの分解能は、探針の先端径に大きく依存することが知られています。その点、COは究極に細い「分子サイズの探針」とみなすことができます。さらに、被占分子軌道(化学結合)が存在する場所においては、CO分子との間にパウリの排他原理に基づく斥力が働きます。これを検出することで、化学結合までをも可視化できるようになった、というわけです。
これほどまでに鮮明なAFM画像を撮影するには、超高真空・極低温で測定を行う必要があります。非エキスパートでも軽々しく撮影できる代物でない、というのが少し残念ではあります。
しかし改良が進んで使いやすくなれば、有機化学者にとってはまさしく“夢の技術”たりえるのではないでしょうか。今後の発展を心待ちにしたいと思います。
関連動画
IBMによる広報動画
関連書籍
工業調査会
売り上げランキング: 754137
工業調査会
売り上げランキング: 386547
SPMの入門書
関連リンク
- Molecules in Close up (Chemistry World)
- Scientists First To Image ‘Anatomy’ Of A Molecule (Science Daily)
- 原子間力顕微鏡 – Wikipedia
- Atomic Force Microscope – Wikipedia
- 第9回非接触原子間力顕微鏡法国際会議 (ナノネット)