[スポンサーリンク]

化学者のつぶやき

化学エネルギーを使って自律歩行するゲル

[スポンサーリンク]

(動画はNewScientistより)

このほど早稲田大学の研究グループから、化学エネルギーを利用して自律歩行するゲル材料が発表されました[2]

百聞は一見にしかず。ムービーをまずはご覧ください。

オレンジ色をした高分子ゲルが、まるで尺取り虫のように、ひとりでに前進歩行するという、驚くべき様子が収められています。

さらに驚くべきことには、ゲルを水溶液中に浸すだけで動くというのです。 外部刺激によって人為的にコントロールする必要はありません。

果たしてこの素材、どんな成分で出来ていて、どんな原理で歩行しているのでしょうか!?

この高分子ゲルは、ルテニウムトリスビピリジン(Ru(bpy)32+)錯体、N-イソプロピルアクリルアミド(NIPPAm)、架橋目的のビスアクリルアミド(MBAAm)、スルホン酸アクリルアミド(AMPS)を共重合させて合成されています。

 

しかしこれだけでは、もちろん望む動きは起きません。

以下の4点が、カラクリを理解するためのポイントになります。

 

①化学振動(chemical oscillation)機構を組み込む
②環境(温度)応答性のあるポリマーを素材として使う
③成分濃度に勾配を付け、形状変化を非対称にする
④一方向へ歩行させるべく、床表面の凹凸をデザインする

 

① 化学振動
Ru(bpy)32+錯体は、ベロウソフ・ジャボチンスキー反応(BZ反応)という化学振動反応の触媒として機能します。BZ反応の基質(マロン酸+臭素酸ナトリウム+希硝酸)溶液にゲルを浸すと、ゲル内部でRu(II)←→Ru(III)の化学振動が生じます。

②温度応答性ポリマー
構成成分となっているポリN-イソプロピルアクリルアミド(PNIPPAm)は、下部完溶温度(lower critical solution temperature; LCST)よりも低温で親水性、高温で疎水性となることが知られています。親水性時には、ゲル内に水が取り込まれ、膨潤します。また、LCSTの値はポリマーの電荷とも対応することが知られています。
すなわち、Ru(III)←→Ru(II)の電価振動に対応した、ポリマー膨潤度のコントロールが期待できます。

①②を組み合わせるだけでも、、実のところゲル振動を起こすことは可能[3]です。しかし肉眼で見えるほど大きな動きにするには、もう一工夫が必要となったようです。

③成分濃度勾配をもつポリマーの合成
親水性のガラスプレート、疎水性のテフロンプレートでモノマー溶液をサンドイッチし、その状態で重合を起こします。こうすると、ガラス側にはAMPSが、テフロン側にはルテニウム錯体が引き寄せられた状態から重合がおこります。このようにして、成分濃度の勾配を持ったポリマーが作成されます。AMPS濃度が高い上面ほど、水が沢山取り込まれ、膨潤率が下面よりも大きくなります。このためゲルは、図のように曲がった形状をとります。もちろん、応答の大きさにも面上下で差異が生じます。

 

chemical_robot_2.gif

 

酸化状態(Ru(III))では、ゲルは縮み大きく曲がる逆に還元状態(Ru(II))では、ゲルが弛緩し伸びた状態になるということが、対照実験により明らかとされています。

 

BZ条件下においては、このレドックスが繰り返され、ゲルの曲率が周期的に変化します。このようなメカニズムゆえ、左右方向への形状変化は、厳密には非対称ではありません。

それでも一方向だけにゲルが動くのはなぜなのでしょうか?
それは、④床にカラクリがあるからです。
彼らは下図のような鋸歯形状の床をデザインし、急勾配の引っかかりをつけて、乗り越えられないようにしているのです。つまり、歯止め機構(ratchet mechanism)でゲルが一方向に移動している、というわけです。

 

chemical_robot_3.gif

相当量のアイデアが詰まっており、おそらく実現までに無数のハードルがあったものと推測されます。かなりチャレンジングな研究に思えます。

実はこの仕事、化学系研究室ではなく、ヒューマノイド研究所主導で行われています。すなわち、電気を使わず”化学エネルギーを使って動くロボット”への将来的応用を見越し、この研究に取り組んでいるというわけなのです。
そのようなコンセプトを、彼らは“ケミカルロボティクス(chemical robotics)”と総称しています。金属などを構成成分とするものと比べて、生体適合性(biocompatibility)に優れた機構が作れる、というのが最大のアドバンテージとなるでしょうか。

 

とはいえ、ケミカルロボティクス自体、ロボット業界ではマイナそのものな取り組みのようです。既存のロボットに比べ制約が多すぎるのが難点だそうで、例えば以下のようなものがざっと考え得るようです。

環境制限 (水or油の中でしか動作しない)
動作制限 (動作範囲が狭く実用的ではない)
保守困難 (メンテナンスが面倒で、かつ壊れやすい)
分野横断的困難 (ロボット工学で薬品を扱うことのハードル)

既存の電動機構に取って代わることは、当分無さそうでしょうか。とはいえ、このゲル材料が相応のクオリティにまで進歩すれば、ロボットに限定せずとも、人工筋肉など多彩な応用が期待できるように思えます。

化学からほど遠そうなイメージのロボット研究者が、こんな研究を実行し、意味あるものを作り上げてしまう事実には、ただただ舌を巻かざるを得ません。

 

ロボットとは無関係な化学界に身を置く筆者ですが、こういった意欲的研究には、最大限のエールを贈りたいと思います。

 

  • 関連文献
[1] review: Paxton, W. F.; Sundararajan, S.; Mallouk, T. E.; Sen, A. Angew. Chem. Int. Ed. 2006, 45, 5420. doi:10.1002/anie.200600060

[2] (a) Maeda, S.; Hara, Y.; Yoshida, R.;  Hashimoto, S. Abstract of Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (b) Maeda, S.; Hara, Y.; Yoshida, R.; Hashimoto, S. Advanced Robotics 2008, 22, 1329. DOI:10.1163/156855308X344855

[3] (a) Maeda, S.; Hara, Y.; Yoshida, R.; Hashimoto, S. Angew. Chem. Int. Ed. 2008, 47, 6690. DOI : 10.1002/anie.200801347 (b) Shinohara, S.-i.; Seki, T.; Sakai, T.; Yoshida, R.; Takeoka, Y. Angew. Chem. Int. Ed. 2008, 47, 9039. DOI : 10.1002/anie.200803046

 

  • 関連リンク

早稲田大学・橋本周司研究室

電場応答性高分子ゲルロボット

東京大学・吉田亮研究室

東京大学・大武美保子研究室

Belousov-Zhabotinsky Reaction – Wikipedia

ベロウソフ・ジャボチンスキー反応 – Wikipedia

Chemical ‘caterpillar’ points to electronics-free robots (NewScientist)

Electronics-Free Robots (the future of things)

変身ロボットのアイデアをDARPAが募集

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. エステルからエステルをつくる
  2. 核酸塩基は4つだけではない
  3. ベンゼン環記法マニアックス
  4. 求電子剤側で不斉を制御したアミノメチル化反応
  5. 光触媒でエステルを多電子還元する
  6. 鉄触媒での鈴木-宮浦クロスカップリングが実現!
  7. 【日本精化】新卒採用情報(2024卒)
  8. キノコから見いだされた新規生物活性物質「ヒトヨポディンA」

注目情報

ピックアップ記事

  1. ケムステ版・ノーベル化学賞候補者リスト【2016年版】
  2. もし新元素に命名することになったら
  3. 「第55回国際化学オリンピック スイス大会」 日本代表が決定!:代表チームへの特別インタビュー
  4. 日本化学会と対談してきました
  5. 危険!DDT入りの蚊取り線香
  6. 細胞の中を旅する小分子|第三回(最終回)
  7. 第15回 有機合成化学者からNature誌編集者へ − Andrew Mitchinson博士
  8. 芳香環シラノール
  9. 保護基の使用を最小限に抑えたペプチド伸長反応の開発
  10. 染色体分裂で活躍するタンパク質“コンデンシン”の正体は分子モーターだった!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP