[スポンサーリンク]

一般的な話題

自己組織化ホスト内包接による水中での最小ヌクレオチド二重鎖の形成

[スポンサーリンク]

 

Minimal nucleotide duplex formation in water through enclathration in self-assembled hosts
Sawada, T.; Yoshizawa, M.; Sato, S.; Fujita, M. Nature Chem. 2009Advance Online Publication doi:10.1038/NCHEM.100

 

ケムステニュースでもお伝えしましたが、化学界最高峰ジャーナルの一つになると衆目を集めている、Nature Chemistryの第1号論文が満を持して公開されました。記念すべき第1号論文を見事射止めたのは、東京大学工学部・藤田誠教授のグループによる研究です。

こちら「つぶやき」では、研究内容の詳細など、少々踏み込んだことについても述べてみたいと思います。

 遺伝情報の担い手であるDNA・RNAなどの構成単位・ヌクレオチド鎖が水中で安定な二重らせんを形成するには、4塩基対以上の長さが必要とされています。しかし水素結合を十分強固なものにしうる疎水的環境においては、それ以下の数でも二重鎖を作ると言われています。例えばリボソームにおける翻訳作業は、3塩基のtRNAアンチコドンがmRNAの相補的部位に結合する過程が、そのキープロセスになっています。わずか3塩基でOKなのは、リボソームが結合部周りに疎水的環境を作り出しているから、と説明されています。

 藤田らは、水中では水素結合ペアを作れない単一ヌクレオチド同士であっても、下記のような人工超分子ケージに内包させればペアを作りうることを示しました。過去に得られた知見から、超分子ケージ内部は疎水的環境にあることが強く示唆されています。つまり、ケージが作り出す疎水的環境が塩基対形成過程において効果的に機能している、と言うことができます。

 こういった人工系がもたらす科学的知見は、生体系の理解へとフィードバック出来ることは勿論、分子情報を扱う新機能系に展開していくための重要な基礎となる――といった感じで論文のストーリーは締めくくられています。いやぁ、流石に上手く書きますね・・・勉強になります。

 ところで話は変わりますが、公式サイトでは、下図のようなNature Chemistry誌の仮想的表紙が閲覧可能です(同様の壁紙もダウンロードできます)。この図がベンゼン環をもつ何かしらの化合物を表していることは推測可能でしょうが、具体的に何なのか、皆さんご存じでしょうか?

 これは、金属-有機構造体(Metal-Organic Framework; MOF)と呼ばれる自己組織化型多孔性材料の模式図です。その代表的化合物、MOF-177[1]がおそらくこの仮想表紙のモチーフになっていると思われます。

 MOF-177は簡便に合成される高分子錯体です。合成後に溶媒を除去してやる事で、フレームワークだけが残り、黄色い球で示される”外部環境から隔絶した空間”をもつ化合物となります。青い多面体は、正四面体状に配位場をもつ亜鉛原子を表しています。無機化学領域ではこのような表記がしばしば見られます。

2015-11-14_03-34-38

 多孔性材料であるMOFは、その孔内に多量のガスを蓄えることができます。特にMOF-177は数ある多孔性材料の中では別格に大きな表面積(4500m2/g)をもち、低温で7.5wt%もの水素を吸蔵できる[2]ことが分かっています。水素ガスは低環境負荷の燃料として知られており、それを安全かつ多量に貯蔵し運搬する技術が進歩すれば、エネルギー問題の対策に効果的なストラテジーとなりえます。それゆえこれらの応用研究は、各方面から多大な注目を集めています。

 その他にも、吸着選択性を利用したガスの分離・浄化技術への応用、藤田教授らの報告と同様な特異的反応場としての活用、ユニークな化学選択性を有する不均一触媒への展開などが、MOFの応用例として考えられています。簡便に合成可能でありながら、無限大の応用性をもつとも言える化合物群なのです。

 まとめると、外部環境から隔絶された空間をもち、その特性を活かした幅広い応用が期待される、自己組織化型化合物―こういった観点で共通点をもつ二つの研究が(仮想)表紙を飾り、かつ第1号論文になっている、ということになります。このことからもNature Chemistry誌が提示する化学未来像の一つが、そういうものであることが伺えます。

Nature Chemistryの本格的公開はもう少し先になりますが、今後どんな論文が発表され、どういう新たなヴィジョンが打ち出されてくるのでしょうか。大いに期待して待ちたいところです。

関連論文

  1. Chae, H. E.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O’Keefe, M.; Yaghi, O. M. Nature 2004, 427, 523. doi:10.1038/nature02311
  2. Wong-Foy, A. G.; Matzger, A. J.; Yaghi, O. M. J. Am. Chem. Soc. 2006, 128, 3494. doi:10.1021/ja058213h

 

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. カーボンナノリング合成に成功!
  2. 2020年ケムステ人気記事ランキング
  3. Hybrid Materials 2013に参加してきました!
  4. 窒素を挿入してペリレンビスイミドを曲げる〜曲面π共役分子の新設計…
  5. メタンハイドレートの化学
  6. 2021年ノーベル化学賞は「不斉有機触媒の開発」に!
  7. 含フッ素カルボアニオン構造の導入による有機色素の溶解性・分配特性…
  8. メカノクロミズムの空間分解能の定量的測定に成功

注目情報

ピックアップ記事

  1. ピニック(クラウス)酸化 Pinnick(Kraus) Oxidation
  2. ディーン・トースト F. Dean Toste
  3. マルコフニコフ則 Markovnikov’s Rule
  4. ケミカルジェネティクス chemical genetics
  5. 室温以上で金属化する高伝導オリゴマー型有機伝導体を開発 ―電子機能性を制御する新コンセプトによる有機電子デバイス開発の技術革新に期待―
  6. ケムステVシンポ「最先端有機化学」開催報告(後編)
  7. グラクソ、糖尿病治療薬「ロシグリタゾン」が単独療法無効のリスクを軽減と発表
  8. 2023年ノーベル化学賞ケムステ予想当選者発表!
  9. ダルツェンス縮合反応 Darzens Condensation
  10. 究極の二量体合成を追い求めて~抗生物質BE-43472Bの全合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年3月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー