“Exploiting Orthogonally Reactive Functionality: Synthesis and Stereochemical Assignment of (-)-Ushikulide A”
Trost, B. M.; O’Boyle, B. M. J. Am. Chem. Soc. 2008, 130, 16190. doi:10.1021/ja807127s
スタンフォード大学・Trostらによる報告です。今回取り上げる化合物・ウシクライドA(Ushikulide A)ですが、彼らのグループが合成に着手した時点では、立体化学が全く決まっていませんでした。
そこでひとまず彼らは、立体化学決定済みの類似構造天然物Cytovaricinの構造を参考に、下記構造だと推定して全合成に取りかかっています。
このようなケースでは、合成したはいいが天然物と合成品の立体化学が違う、ということが当然ながら起こりえます。多くの場合、とにかく完成させて分析結果を比較しないとダメで、最後の最後まで違いが分かりません。こういう高いリスクを織り込み済みで研究を進めなくてはならない・・・というのが頭の痛いところです。
このような場合、すなわち全合成で天然物の三次元立体構造を確定しようとする場合には、“全ての不斉点を状況に応じて変更できる方法論”を用いつつも、それを各フラグメント毎に実行可能な“収束性の高い合成ルートの設定”、という研究戦略が必要不可欠となります。
上記目的に合致する方法論は、現代ではすなわち(触媒的)不斉合成法をベースとしたものになります。下記に逆合成ルートと鍵反応の概要を示しておきますが、実際、ほとんどの不斉点がreagent/catalyst controlの手法を用いて構築されていることがわかります(詳細は論文をご覧ください)。
不斉点を制御するための、古今東西あらゆる技術が盛り込まれている全合成といえます。3ページのコミュニケーションですが、読み応えは満点です。論文紹介セミナーなどに適した論文ではないでしょうか。
ラボが独自に開発した反応を、全合成へ応用して有用性をデモンストレーションするという研究例は多くあります。しかしながら、反応にあわせた基質デザインを必要とし、冗長で非効率的なルートになってしまうという、本末転倒な結果にもなりがちです。鍵反応の持つ制約ゆえに、適用可能な化合物の大きさに限界がある、というのが多くの方法論が持つハードルだといえます。
Trostグループは、常時、独自に開発した反応・方法論を用いて全合成を行っています。にも関わらず、彼らのグループからは、今回のようにかなりの巨大ターゲットが報告されることも少なくありません。彼らが開発する方法論には、“収率・化学選択性・汎用性が高い”という以上のファクターがあるように思えます。つまり反応の結合生成様式そのものが、有機合成の本質を突いているのでしょう。それゆえ無駄の出ないルート設定、ひいては巨大複雑天然物の合成を可能としているのだと思われます。流石に“アトムエコノミー”を謳うだけのことはあるな、と感じます。
ちなみに、Trost教授以外の共著者はただ一名。つまりこれだけの仕事をたった一人が現実的にやってのけていることになりますが・・・ちょっと信じられない話に思えます。
(追記) 先日Trost教授のこの話を盛り込んだお話を3時間たっぷり聞かせていただきました。長時間の講演にも関わらず非常にアクティブで面白い講演。齢70に近いにもかかわらず、いまだ第一線を走っている化学者の一人ですね。若手も負けずにがんばらなければなりません(ブレビ)。