[スポンサーリンク]

化学者のつぶやき

光レドックス触媒と有機分子触媒の協同作用

[スポンサーリンク]

Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric
Alkylation of Aldehydes
Nicewics, D. A.; MacMillan, D. A. Science 2008, published on ScienceExpress doi:10.1126/science.1161976

プリンストン大学MacMillanらによる報告です。

以前、彼らは新規活性化方式としてのSOMO-Activation概念[1]を提唱し、有機分子触媒の新たなフィールドを切りひらきました。 すなわち、系中で生成するエナミン中間体を一電子酸化し、生じたラジカル中間体を化学結合形成に活用する、というものです。

 

今回彼らは、一電子酸化過程の触媒化に成功し、更なる発展を成し遂げました。キーポイントとなったのは、光レドックス触媒としてよく知られているRu(bpy)32+錯体[2]を共存させたことです。これによりSOMO-Activation形式で、アルデヒドの不斉α-アルキル化が進行します。Ru錯体が無いと反応はほとんど進行しません。

 

いくつかの適用例を下図に示しておきます。
オレフィンや、シクロプロピルフェニル(ラジカルクロック)基が反応しない事から、過去提唱されていたエナミンラジカルとは異なる中間体の存在が示唆されてます。α-ハロケトンは問題なく適用できますが、α-ハロエステルは電子求引基を持つほうが良いようです。とりわけ、置換反応には適用困難とされる、ラセミ体の三級アルキルハライドが適用可能というのは特筆すべき点であり、この反応の強力さを如実に示しています。

 

photoredox_macmillan_3.gif

安価な市販試薬を用いて室温下に行え、UVなどの強エネルギー光源を必要とせず、大量合成にも適用可能な優れた方法です。ただ、現在のところ、アクセプターはα-ハロカルボニル化合物に限られてしまうようです。

 

このような基質一般性、およびルテニウム錯体の酸化還元電位値を考慮し、彼らは「アルキルハライドから還元的に生成する電子不足アルキルラジカルが、電子豊富エナミンに付加する」という触媒サイクルを提唱しています。

 

photoredox_macmillan_2.gif
(クリックすると大きな画像が出ます:Science誌より転載)

ルテニウムの配位子を変更することで、酸化還元電位を調節しうる可能性についても論文中で触れられています。今後さらなるチューニングにより、基質一般性の拡張などが期待できます。
これまで関連が薄いと考えられていた分野の化学同士を結びつけている、かなり意欲的な研究の一つではないでしょうか。

 

関連論文

[1] Beeson, T. D.; Mastracchio, A.; Hong, J. B.; Ashton, K.; MacMillan, D. W. C. Science 2007, 316, 582. DOI: 10.1126/science. 1142696
[2] (a) Kalyanasundaram, K. Coord. Chem. Rev. 1982, 46, 159. (b) Juris, A. et al. Coord. Chem. Rev. 1988, 84, 85.

 

関連試薬

Aldrich


mfcd03426983.gifMacMillan触媒
: (5S)-(?)-2,2,3-Trimethyl-5-benzyl-4-imidazolidinone monohydrochloride

分子量:254.76

CAS:278173-23-2

製品コード:569763

用途:不斉有機分子触媒

説明:2000年に報告された、触媒的不斉Diels-Alder反応を皮切りに、MacMillanらは、1,3- 双極子環化付加反応や、Friedel-Crafts アルキル化反応、α- 塩素化反応、α- フッ素化反応、分子内Michael 反応などを高いエナンチオ過剰率で進行させることが可能な触媒を見出した。このイミダゾリジノン触媒を基本骨格として、さらに様々な触媒的不斉合成反応を見出している。

文献:Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem. Soc.
2000, 122, 9874.

その他のMacMillan触媒に関する記述: 有機分子触媒(Aldrichオンラインカタログ, PDFファイル)

 

関連リンク

 

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 究極の二量体合成を追い求めて~抗生物質BE-43472Bの全合成…
  2. 分子構造をモチーフにしたアクセサリーを買ってみた
  3. 速報! ノーベル物理学賞2014日本人トリプル受賞!!
  4. 化学者のためのエレクトロニクス講座~無電解めっきの原理編~
  5. 酵素合成と人工合成の両輪で実現するサフラマイシン類の効率的全合成…
  6. 日本薬学会  第143年会 付設展示会ケムステキャンペーン Pa…
  7. 日本薬学会第144年会 (横浜) に参加してきました
  8. ノーベル化学賞解説 on Twitter

注目情報

ピックアップ記事

  1. ゼナン・バオ Zhenan Bao
  2. 論文・学会発表に役立つ! 研究者のためのIllustrator素材集: 素材アレンジで描画とデザインをマスターしよう!
  3. ゴールドエクスペリエンスが最長のラダーフェニレンを産み出す
  4. 出張増の強い味方!「エクスプレス予約」
  5. 強酸を用いた従来法を塗り替える!アルケンのヒドロアルコキシ化反応の開発
  6. Actinophyllic Acidの全合成
  7. 2014年ノーベル化学賞・物理学賞解説講演会
  8. 海外機関に訪問し、英語講演にチャレンジ!~③ いざ、機関訪問!~
  9. 宇部興産、オランダDSM社と「キラル技術」で提携
  10. フリーデル・クラフツ アシル化 Friedel-Crafts Acylation

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2008年9月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

ヤーン·テラー効果 Jahn–Teller effects

縮退した電子状態にある非線形の分子は通常不安定で、分子の対称性を落とすことで縮退を解いた構造が安定で…

鉄、助けてっ(Fe)!アルデヒドのエナンチオ選択的α-アミド化

鉄とキラルなエナミンの協働触媒を用いたアルデヒドのエナンチオ選択的α-アミド化が開発された。可視光照…

4種のエステルが密集したテルペノイド:ユーフォルビアロイドAの世界初の全合成

第637回のスポットライトリサーチは、東京大学大学院薬学系研究科・天然物合成化学教室(井上将行教授主…

そこのB2N3、不対電子いらない?

ヘテロ原子のみから成る環(完全ヘテロ原子環)のπ非局在型ラジカル種の合成が達成された。ジボラトリアゾ…

経済産業省ってどんなところ? ~製造産業局・素材産業課・革新素材室における研究開発専門職について~

我が国の化学産業を維持・発展させていくためには、様々なルール作りや投資配分を行政レベルから考え、実施…

第51回ケムステVシンポ「光化学最前線2025」を開催します!

こんにちは、Spectol21です! 年末ですが、来年2025年二発目のケムステVシンポ、その名…

ケムステV年末ライブ2024を開催します!

2024年も残り一週間を切りました! 年末といえば、そう、ケムステV年末ライブ2024!! …

世界初の金属反応剤の単離!高いE選択性を示すWeinrebアミド型Horner–Wadsworth–Emmons反応の開発

第636回のスポットライトリサーチは、東京理科大学 理学部第一部(椎名研究室)の村田貴嗣 助教と博士…

2024 CAS Future Leaders Program 参加者インタビュー ~世界中の同世代の化学者たちとかけがえのない繋がりを作りたいと思いませんか?~

CAS Future Leaders プログラムとは、アメリカ化学会 (the American C…

第50回Vシンポ「生物活性分子をデザインする潜在空間分子設計」を開催します!

第50回ケムステVシンポジウムの開催告知をさせて頂きます!2020年コロナウイルスパンデミッ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP