[スポンサーリンク]

一般的な話題

保護基のお話

[スポンサーリンク]

 複数の官能基を持つ化合物を合成するとき、ある官能基のみを選択的に反応させたい、ということが良くある。

 例えば図1を見てほしい。3つあるヒドロキシル基のうち、1つだけを酸化してアルデヒドにしたい。しかしこのケースにおいては、そのままだと他の二つともども酸化されてしまう。どうすればよいだろうか?


図1:選択的に反応させたいなぁ・・・

 こういう場合には図2の青色で示したように、エーテルやエステルといった、酸化に不活性な官能基に一時的に変えておけば良い


図2:選択的に反応できたよ

 こういった目的に使われる、着脱可能な官能基を保護基(Protecting group)という。今回のトピックでは、この”保護基”について簡単に解説してみたい。

 

  保護基の性質

 保護基は上で述べたように、特定の化学反応から官能基を保護する(化学安定性を高める)ことが主たる使用目的である。目的に応じた安定性を得るべく、さまざまな種類の保護基が開発されている。

 その他にも、以下のような特性を期待して使うことも多い。

 ① 溶解性の向上・極性の低減: 糖質やアミノ酸は合成出発物質としてしばしば利用される。しかし化合物の極性が高く、多くの有機溶媒に溶けにくい。水相に移行したり、分離担体に吸着されてしまい収率の低下を招くこともある。極性官能基を保護してやることで、この点を改善させることができる。

 ② 結晶性の向上: 合成中間体を精製する場合、特に大スケールの場合にはカラムクロマトグラフィーの使用がはばかられることが多い。再結晶の積極的使用を考えたい場合、保護基を適切に選択し、結晶性の向上を期待することが多い。単結晶が得られれば、X線結晶構造解析によって3次元構造も決定できるため、分析的観点からも重要である。この目的には、ブロモ基やニトロ基、芳香環を含む保護基をチョイスすることが多い。

 ③ 生物活性の変化: 生理活性物質は、極性官能基を介して生体高分子と相互作用することが多い。保護基を導入すると、極性官能基が遮蔽される。このため、一般に生物活性は低減する。

 ④ 揮発性の変化: 保護基を導入すると分子量が大きくなり、沸点が上昇する。これにより、減圧下での溶媒留去や乾燥が容易になる。一方、アルコールをメチルエーテル、トリメチルシリルエーテル等にすると、分子量の増加度の割に極性低下が大きく、結果として揮発性が増すことが多い。これにより、質量分析やガスクロマトグラフィなどによる分析が容易になる。

 ⑤ 構造解析の易化: 本来UV吸収をもたない化合物に、強いUV吸収をもつ保護基(ベンゾイル基など)を導入するなどの手法が一般的である。これにより、HPLCなどでの高感度検出が可能となる。

 ⑥ 反応性の変化: 嵩高い保護基を用いて近傍の反応点を遮蔽したり、配位性保護基を用いて化学選択性の制御を行うことも可能。

代表的な保護基

 保護基には、保護しやすいだけでなく、脱保護しやすいという性質も重要である。最終化合物は保護されていないケースが多いので、最終的に取り外すことが出来なければ意味がない。

 目的に応じ多種多様な保護基が開発されているが、合成をうまく進めるには、それぞれの特徴を学び、場合に応じて使い分けなくてはいけない。

 表1に、アルコールの保護に用いられる、代表的な保護基の略称・脱保護の条件などを示しておく。他の保護基については、ODOOSに情報を登録してあるので参考にしてほしい。

構造 名称(略称) 脱保護条件
ベンジル (Bn) ・H2,Pd/C
・Na/NH3 など
p-メトキシフェニルベンジル (PMB or MPM) ・Bnと同様
・DDQを用いる酸化条件
メトキシメチル (MOM) ・HCl/MeOHなどの酸加溶媒分解
・MeBBr2 など
トリメチルシリル (TMS) ・AcOH/H2O/THFなどの酸加水分解
・TBAF、HF-Pyなどのフッ素アニオン源
・安定性は TMS<TES<TBS
トリエチルシリル (TES)
t-ブチルジメチルシリル(TBS)
アセチル (Ac) ・塩基性条件下加水分解
・DIBAL・LAH還元など
ベンゾイル (Bz)
トリチル (Tr) ・酸加水分解など

表1:アルコールの代表的な保護基

実際の活用例

それでは実際の論文より、保護基の使用例と脱保護例をいくつか取り上げてみよう。

 図3の例では、1)でMPM基を除去、b)でTBS基を導入している。


図3

 図4の例では、条件の違いでTBS保護のパターンが異なっている。

 


図4

 図5の例では、1)でアセチル基保護、2)でMEM(2-メトキシエトキシメチル)基を除去している。MEM基を脱保護したアルコールのみを光延反応によって反転させる予定となっている。アセチル保護は、そのために必要である。

図5

おわりに

 以上見てきたが、保護基は保護・脱保護のプロセスが必要なため、工程数の増加という本質的問題点を含んでいる。しかしながら、現代においてもなお、有機合成には欠かせないものといえる。近年では保護基に機能を持たせ、従来不可能であった変換を進行させるような研究例も報告されている。これを機会に勉強してみるとよいだろう。

(2001.2.5 byブレビコミン、2008.6.20 加筆修正 by cosine)
(※本記事は以前より公開されていた記事を「つぶやき」に移行し、加筆修正を施したものです)

関連書籍

[amazonjs asin=”1118057481″ locale=”JP” title=”Greene’s Protective Groups in Organic Synthesis”]

関連リンク

Protecting Group (Wikipedia)
・Protective Group (A.Myers’ Group;PDF)
保護基 (Wikipedia日本)
Protecting Groups (organic-chemistry.org)
Protecting Groups – Stability (organic-chemistry.org)
Protecting Groups

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 2007年ノーベル化学賞『固体表面上の化学反応の研究』
  2. 学振申請書を磨き上げる11のポイント [文章編・後編]
  3. 光の色で反応性が変わる”波長選択的”な有機光触媒
  4. 2012年ケムステ人気記事ランキング
  5. アメリカ大学院留学:博士候補生になるための関門 Candidac…
  6. 触媒なの? ?自殺する酵素?
  7. 分子間エネルギー移動を利用して、希土類錯体の発光をコントロール!…
  8. 深紫外光源の効率を高める新たな透明電極材料

注目情報

ピックアップ記事

  1. 酸素を使った触媒的Dess–Martin型酸化
  2. 分子振動と協奏する超高速励起子分裂現象の解明
  3. 触媒的炭素–水素結合活性化による含七員環ナノカーボンの合成 〜容易な合成法、高い溶解性・凝集状態で強まる発光特性を確認〜
  4. BulkyなNHCでNovelなButadiyne (BNNB) アナログの反応
  5. 銀を使ってリンをいれる
  6. Hazardous Laboratory Chemicals Disposal Guide
  7. 日本薬学会第144年会付設展示会ケムステキャンペーン
  8. アルケンの実用的ペルフルオロアルキル化反応の開発
  9. アルカリ土類金属触媒の最前線
  10. イミデートラジカルを経由するアルコールのβ位選択的C-Hアミノ化反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2008年6月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー