Epoxide-Opening Cascades Promoted by Water.
Vilotijevic, I.; Jamison, T. F. Science 2007, 317, 1189. DOI: 10.1126/science.1146421
冒頭図下のジムノシン(Gymnocin)のように、エーテル含有環が沢山連結した化合物は、海産性の天然毒物に多く見られます。このようなポリエーテル縮環構造をもつものとしては他に、シガテラ食中毒の原因化合物であるシガトキシン(Ciguatoxin)、赤潮が発生させる毒成分であるブレベトキシン(Brevetoxin)などが知られています。それらの化合物群は広く海産ポリエーテル天然物と呼ばれています。
「このように複雑なポリエーテル系天然物を、生物はどのように合成しているのでしょうか?」
今回マサチューセッツ工科大・Timothy Jamisonらによって、この長年にわたる疑問を理解する一助となるかも知れない報告がなされました。
上述の疑問に対する回答として最有望視されているのが、コロンビア大・中西香爾教授によって提唱された『エポキシド開環カスケード生合成仮説』[1]です。 すなわち、冒頭図上のようなポリエポキシドが連続的に分子内置換・開環を繰り返しつつ、ポリエーテル系天然物を与える――という天才的な発想から導かれた、大変美しい仮説です。ただ、実験的証拠に極めて乏しく、あくまで仮説の域を出ませんでした。
フラスコ内でこの反応を行う試みは、実に早い段階で試されているものの、カスケード仮説とは異なる選択性で進行してしまうのです。
すなわち、アルコールによる類似のエポキシド開環は、5-exo-tet環化のほうが6-endo-tet環化よりも優先してしまいます。Baldwin則によればどちらも許容な反応ですが、フラスコ反応の結果からは『カスケード仮説』を支持する事実は得られてこなかったのです。
ただ、これは有機溶媒中での話だったのです。
今回Jamisonらは、中性の水を溶媒として開環反応を行うと6員環形成が優先することを見いだしました。すなわち、下スキームのような反応条件に伏すことで、スキーム右のような6員環連結化合物が高収率で得られる、ということを明らかとしたのです。
同じ基質を用いて有機溶媒中でカスケード反応を行った場合、5員環形成が優先してくるか、反応がうまく進行しないかのどちらかです。また、温度は選択性に関係しないことも分かっています。すなわち何らかの形で水溶媒が遷移状態に関与していることが考えられます。機構の詳細については、論文中ではごく推測的にしか触れられていませんが、今後の研究を待つ必要があるでしょう。
エントロピー的に有利となるよう、あらかじめ六員環を組んだ基質を用いて反応させている、という点には勿論注意しておく必要があるでしょうが、 本報告は生体内(水中)で起こるとされる『カスケード仮説』を支持しうる重要な知見となりうるのではないでしょうか。
【追記 2009.6.24】
On the Synergism Between H2O and a Tetrahydropyran Template in the Regioselective Cyclization of an Epoxy Alcohol
Byers, J. A.; Jamison, T. F. J. Am. Chem. Soc. 2009, 131, 6383. doi:10.1021/ja9004909
最近、本反応のメカニズム解明論文が発表されました。2つの水分子が水素結合することによって遷移状態を固定化するとの考察です。
関連文献
[1] Nakanishi, K. Toxicon 1985, 23, 473.
関連リンク
Toxin’s synthesis secret cracked (Chemistry World)
When Organics Fail, Try Water (C&EN)
海産物の毒 (有機化学美術館)