[スポンサーリンク]

化学者のつぶやき

本当の天然物はどれ?

[スポンサーリンク]

今回は天然物合成の分野から、なかなか複雑なケースが報告されていたため紹介します。なにが複雑かというと、その構造ではなくて、どれが本当の天然物なの?ということです。

 槍玉に挙がったTerpestacin

  Terpestacin(1)は1993年OkaらによりArthrinium sp. から単離された血管新生阻害作用を有する天然物です [1]。炭素15員環を含むユニークな構造から、10年以上にわたって合成化学者の格好の合成標的になっています(図1)。この天然物が単離・構造決定された当初、相対・絶対立体配置は1として決定されていました。そこで、多くの合成化学者は1の構造を信じてこの天然物を合成を行うこととなります。

realnp_1

構造決定の推移

Okaらは単離したTerpestacin(1)の旋光度を+26(CHCl3)と報告していました。同年にRandrazzoらにより1の1級水酸基がアセチル化されたFusaproliferin(3)が単離されました。しかし1995年にSarntiniらによってこの3はTerpestacin(1)のC23位エピマーであると訂正されました。

その3年後、早稲田大学の竜田らは、1の初の全合成を報告しました [2]。旋光度も+27と報告値と同等であることから、天然物と同じ絶対立体配置で合成したと結論づけています。

図1:構造決定の推移 (出典:T. F. Jamison et al., J. Am. Chem .Soc. 126, 10682 (2004).)

さらにその3年後、Grafeらは1の構造を有しつつ、旋光度が-16.5である天然物を単離しました。絶対値が若干異なりますが、旋光度の符号が逆ということで、1のエナンチオマーとして報告しました。ここまでの話は簡単で、すべて正しいように思えます。

しかし、2002年にMyers13の不斉全合成を行ったところ、得られた1の旋光度の符号はマイナスを示してしまいました [3]。そこで、Myersらはこの旋光度の違いを考察し、Okaと竜田らは旋光度を測定する際のCHCl3を炭酸カリウムで処理した際に炭酸カリウムが混入しており、それにより1がクロロエーテル化され旋光度がプラスになってのではないか、と報告しました。

うーん、そんなことがあるのだろうか?そういうこともあるのだろう・・・と、この話は一つの結論に達したように思えました。

 ところが、さらに同年Miyagawaらにより1のC11位エピマー(2)とされる「siccanol」が単離されました。そこでJamisonらが12を合成し、Miyagawaらの「siccanol」のスペクトル値と比較したところ、「siccanol」の構造は2ではないことがわかりました。

??どういうことなんだ??・・・さらに複雑になりました。

Terpestacin(1)とepi体(2)の構造比較

 Jamisonらが合成したTerpestacin(1)は、すべてのスペクトルデータが他の研究者の合成品と一致しました [4]。しかし、合成した11-epi-Terpestacin(2)のNMRデータは、Miyagawaらの単離天然物「siccanol」とC3、13、15、19位において一致しませんでした(表1)。C11位の化学シフト値は一致したため、当初はC19位ジアステレオマーを合成してしまったものと考えられました。しかしこれらを誘導化した化合物のNOE測定により、ここは同一の立体であることがわかりました。

表1:Terpestacin、11-epi-Terpestacin、siccanolの1H-NMRの比較 (出典:T. F. Jamison et al., J. Am. Chem. Soc. 126, 10682 (2004).)

ここでよくみると、なんとMiyagawaらによる「siccanol」とTerpestacin(1)のスペクトルデータは全く一致していることがわか ります。

「siccanol」は11-epi-Terpestacinではなく、Terperstacinそのものだったのです。

 


なぜ構造を誤ったのか?

Jamisonらの合成によって、「siccanol」がTepestacinであることがわかりました。どうしてこのようなことが起こったのでしょうか?

第一に、Myersらによる13の全合成と、Miyagawaらによる「siccanol」の単離がほぼ同時期であり、それぞれのグループがお互いの論文に気づかなかったことが考えられます。つまり、旋光度の符号・絶対値がOkaらの単離品、竜田らの合成品と異なっていることのみを根拠に、異なる構造と考えてしまったのでしょう。

第二に、OkaのTerperstacin(1)及びMiyagawaらの「siccanol」の立体決定はMosherエステル法によって行われていますが、Miyagawaらの論文には詳細な実験操作が記載されていません。

しかし、論文中に

”….a set of (R)-MTPA and (S)-MTPA esters (at C11) was prepared..(from)… the respective MTPA chlorides.”

と記載があり、そこに原因があるのではないかとJamisonらは考えました。

絶対立体配置を決定法であるCahn-Ingold-Prelog則によれば、(R)-MTPA chlorideからは(S)-MTPAエステルが得られます

Miyagawaらは(R)-MTPAエステルを得るために(R)-MTPA chlorideを誤って用いてしまい、結果的にC11が逆の立体であるとの判断を下してしまったものと考えられました。さらにMiyagawaらは、Jamisonらにオリジナルのノートを提供し、この予想が正しいことが確認されました。

 結論を聞くと多くの間違い・勘違いがあり、非常にお粗末な結果とも取れますが、現場ではありえない話でもないと思います。研究室の学生が行った実験を信用し、スタッフが論文を書く段になっても結果に対してのチェックが行われず、結論が異なる方向に向かう・・・などといったことは往々にしてありえます。Terpestacinを巡る論文は、そのようなことがかなり複雑に絡み合ったケースだったといえるでしょう。論文は何世紀にもわたり残るものですから、しっかりとした結果を報告したいものですね。

(2005.1.25 ブレビコミン)
※本記事は以前より公開されていた内容をブログに移行したものです。

参考文献

  1. Oka, M. et al.  J. Antibiotics  199346, 367.
  2. Tatsuta, K.; Masuda, N. J. Antibiotics 1998, 51, 602. DOI:10.7164/antibiotics.51.602
  3. Myers, A. G.; Siu, M.; Ren, F. J. Am. Chem. Soc. 2002, 124, 4230. DOI: 10.1021/ja020072l
  4. Jamison, T. F. et al. J. Am. Chem. Soc. 2004126, 10682. DOI: 10.1021/ja0470968

 

関連書籍

[amazonjs asin=”4254140746″ locale=”JP” title=”天然物の全合成―華麗な戦略と方法”]
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. お望みの立体構造のジアミン、作ります。
  2. 機能を持たせた紙製チップで化学テロに備える ―簡単な操作でサリン…
  3. 有機強相関電子材料の可逆的な絶縁体-金属転移の誘起に成功
  4. 高校教科書に研究が載ったはなし
  5. その構造、使って大丈夫ですか? 〜創薬におけるアブナいヤツら〜
  6. 少年よ、大志を抱け、名刺を作ろう!
  7. フェネストレンの新規合成法
  8. むずかしいことば?

注目情報

ピックアップ記事

  1. 給電せずに電気化学反応を駆動 ~環境にやさしい手法として期待、極限環境での利用も~
  2. 三井化学、「環状オレフィンコポリマー(商標:アペル)」の生産能力増強を決定
  3. 目からウロコの熱伝導性組成物 設計指南
  4. ゲオスミン(geosmin)
  5. 盗難かと思ったら紛失 千葉の病院で毒薬ずさん管理
  6. マーティン・ウィッテ Martin D. Witte
  7. キニーネ きにーね quinine
  8. 国際宇宙ステーション「きぼう」日本実験棟でのColloidal Clusters 宇宙実験
  9. 光熱変換材料を使った自己修復ポリマーの車体コーティングへの活用
  10. 米FDA立て続けに抗肥満薬承認:Qsymia承認取得

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2005年1月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

モータータンパク質に匹敵する性能の人工分子モーターをつくる

第640回のスポットライトリサーチは、分子科学研究所・総合研究大学院大学(飯野グループ)原島崇徳さん…

マーフィー試薬 Marfey reagent

概要Marfey試薬(1-フルオロ-2,4-ジニトロフェニル-5-L-アラニンアミド、略称:FD…

UC Berkeley と Baker Hughes が提携して脱炭素材料研究所を設立

ポイント 今回新たに設立される研究所 Baker Hughes Institute for…

メトキシ基で転位をコントロール!Niduterpenoid Bの全合成

ナザロフ環化に続く二度の環拡大というカスケード反応により、多環式複雑天然物niduterpenoid…

金属酸化物ナノ粒子触媒の「水の酸化反応に対する駆動力」の実験的観測

第639回のスポットライトリサーチは、東京科学大学理学院化学系(前田研究室)の岡崎 めぐみ 助教にお…

【無料ウェビナー】粒子分散の最前線~評価法から処理技術まで徹底解説~(三洋貿易株式会社)

1.ウェビナー概要2025年2月26日から28日までの3日間にわたり開催される三…

第18回日本化学連合シンポジウム「社会実装を実現する化学人材創出における新たな視点」

日本化学連合ではシンポジウムを毎年2回開催しています。そのうち2025年3月4日開催のシンポジウムで…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー