[スポンサーリンク]

archives

水溶性アクリルアミドモノマー

[スポンサーリンク]

概要

皆さまはポリマー材料と聞いたとき、何をイメージしますか?身の回りにある樹脂製品から特殊な機能性高分子など、それぞれ思い浮かべるものは違うのではないでしょうか。このようにポリマー材料は様々な用途で使われています。その魅力はモノマーや重合条件などによって物性が大きく変わる点です。今回は、アクリルアミド骨格を有するモノマーに着目して、その特性やポリマー材料としたときの用途などをご紹介します。

アクリルアミドポリマーの物性

一般的にアクリルアミドポリマーは次のような特長を持つと言われています。

・水溶性ポリマーとして知られる

・生体適合性が高く、バイオマテリアルとして注目されている

・架橋度によって、増粘剤から親水性コーティングまで用途の幅が広い

アクリルアミドポリマーの具体的な利用例は、電気泳動用のゲル、保水剤、吸収剤、感温性ゲル材料、組織培養培地、土壌改良剤などであり、総じて「水」に関わる分野で使われます。アクリル板としておなじみのPMMA(ポリメタクリル酸メチル)や、発泡スチロールで用いられるPS(ポリスチレン)とは、かなり性質が異なることがお分かりいただけるかと思います。

アクリルアミドモノマーの種類

富士フイルム和光純薬では、これらの機能性高分子の開発に有用なアクリルアミドモノマーを取り扱っております(検索ページはこちら)。代表的なモノマーの構造と、これを原料としたポリマーの機能や用途をいくつか示します。(表1)

表1  代表的なアクリルアミド誘導体とポリマーの機能・用途

これ以外にも多くのアクリルアミド誘導体がありますが、特にユニークなものとして、ベタイン構造を有する単官能アクリルアミドと、官能基の数や結合位置、主鎖の構造が異なる多官能アクリルアミド(2,3,4官能)をピックアップします。

高親水性単官能メタクリルアミドモノマー(FOM-03010)

<特長>  FOM-03010は、同一分子内にアミド構造とベタイン構造を有しており、非常に高い親水性を示します。親疎水性の指標となるCLogP値で比較すると、汎用の親水性モノマーは-2~+1程度であるのに対して、FOM-03010は-10を示し、はるかに高い親水性を示しています(図1)。水に50 wt%以上溶解、さらにメタノールなどにも容易に溶けます。また、耐加水分解性にも優れています。

図1. FOM-03010のCLogP値

<用途>  FOM-03010を含むポリマーは、培養容器などの細胞を扱う器具のコーティング剤として有効です。FOM-03010とメタクリル酸ブチルとの共重合体をガラス表面に塗布し、マウス繊維芽細胞(3T3細胞)の付着性を確認すると、共重合体を塗布した右側では細胞の付着が見られず、細胞非付着性を示すことが観察されました。

図2. FOM-03010共重合体をコーティング剤とした細胞非付着性評価

疎水性相互作用を抑制できる親水性コーティングはバイオ系でよく用いられており、基材表面へのタンパク質や細胞の付着を防止する有効な方法になります。例えば、医学分野では人工臓器やカテーテルなどを対象として血栓の形成を抑制します。また、歯学分野では細菌の付着を防止する効果が期待できます。

水溶性多官能アクリルアミドモノマー(FOM-03006, -03007, -03008, -03009)

既存の架橋剤は水への溶解性が低く、皮膚刺激性や感作性を有するものが多い課題がありました。これに対してFOM-03006は高い水溶性、硬化性、安定性(耐加水分解性)、安全性を併せ持った多官能アクリルアミドモノマー(架橋剤)として開発されました。類似する化合物として、官能基の数や結合位置、主鎖の異なるタイプFOM-03007, -03008, -03009があります(表2)。

表2  多官能アクリルアミド(2,3,4官能)の構造と物性

ポリマーは架橋の様式で物性が大きく変化します。そのため、求めるポリマーの物性や使用する目的に合わせた架橋剤の種類や添加量の最適化が重要となってきます。ここからは、FOM-03006を例として、多官能アクリルアミドモノマーの特長や用途についてご紹介します。

<FOM-03006の特長>  FOM-03006は、水に50 wt%溶解するほか、メタノールなどの親水性溶媒にも容易に溶けます。また、酸性~塩基性水溶液中での耐加水分解性に優れています(図3)。同じくアクリルアミド骨格を持つ2官能性のTM-1と比較しても明確な違いがあります。ポリマー材料の用途を考えた場合に確認すべき安全性評価においても、全て問題ないことが確認されました(皮膚刺激性・腐食性:PII = 0、無刺激、皮膚感作性:陰性、変異原性(Ames):陰性)。

<FOM-03006の用途 ①親水性コーティング>  FOM-03006と水溶性の光ラジカル開始剤を水に溶解し、基材に塗布した後に光を照射すると水に不溶な硬化膜が形成できます。

 

FOM-03010(単官能) / FOM-03006(架橋剤)/ 光ラジカル開始剤 = 30 / 67 / 3の組成物から得られる光硬化膜(コートA)は、親水性に優れており、水接触角が小さくなります(表3)。なお、コートAはPET基板に塗布、乾燥 (50℃/5分)、光硬化 (3 J/cm2)して作成しています。光硬化には高圧水銀灯を使用し、露光量はUV-Aで管理しています。

表3 コートAの光硬化膜の水接触角

 

<FOM-03006の用途 ②硬化収縮の小さいコーティング膜>   市販の多官能アクリルモノマーをFOM-03006に置き換えると、硬化収縮が小さいコーティング膜ができます。PETフィルムに塗布して硬化させた結果、FOM-03006を用いたコートBは、市販の多官能アクリルモノマーを用いたコートCと比較して、カールが少ないことが確認されました。

※ コートB:HEMA  / FOM-03006/ 光ラジカル開始剤 = 50 / 47 / 3 ※ コートC:HEMA / 市販多官能モノマー/ 光ラジカル開始剤 = 50 / 47 / 3

FOM-03006のその他の用途

歯科材料:   親水性モノマーとして知られるHEMA(2-hydroxyethyl methacrylate)の代替材料として、性能や安全性の改善が期待されるFOM-03006が検討されています。1), 2)

ヒドロゲルの架橋剤:   ポリアクリルアミドから構成されたヒドロゲルは、一般に高架橋剤濃度では脆く、あまり伸びずに破断しやすいものとなり、低架橋剤濃度では伸びやすく、応力がかかりにくいものとなります。4官能のFOM-03006を架橋剤として用いると、低架橋剤濃度の条件でより高い応力まで破断せず、元の形状に戻るアクリルアミドポリマーが得られたと報告されています。3)

おわりに

今回は水溶性モノマーについてご紹介しました。いかがでしたでしょうか?水溶性のモノマーと架橋剤を用いた水系コーティング技術は、産業分野において揮発性有機化合物(VOC: Volatile Organic Compounds)の低減につながります。また生体適合性の高さから、医療、バイオサイエンス領域での用途開発も期待されています。機能性材料としてアクリルアミドポリマーのポテンシャルはまだまだありそうです。皆さまの研究にもぜひお役立てください!詳しくは関連ページからご確認いただけます。

引用文献

1)Pedano, M. S. , Yoshihara, K. , Li, X. , Camargo, B. , Landuyt, V. K. , Meerbeek, B. V.: Mater. Sci. Eng. C., 126, 112105 (2021). DOI: 10.1016/j.msec.2021.112105

2)Yoshihara, K. , Nagaoka, N. , Okihara, T. , Irie, M. , Matsukawa, A. , Pedano, M. S. , Maruo, Y. , Yoshida, Y. , Meerbeek, B. V. :J. Mater. Chem. B., 8, 5320 (2020). DOI:10.1039/d0tb00079e

3) 吉田孝太郎, 柴田充弘, 寺本直純 : “ポリアクリルアミドゲルの圧縮物性における架橋剤の官能基数の影響”, 第 28 回ポリマー材料フォーラム (2019).

関連ページ

富士フイルム和光純薬 試薬ページ 水溶性アクリルアミドモノマー

富士フイルム和光純薬 化成品ページ 水系硬化材料

 

Avatar photo

富士フイルム和光純薬

投稿者の記事一覧

「次の科学のチカラとなり、人々の幸せの源を創造する」
みなさまの研究開発を支えるチカラとなるべく、
これからも高い技術とクオリティで、次代のニーズにお応えします。
Twitterでの情報提供を始めました。

関連記事

  1. 加熱✕情熱!マイクロ波合成装置「ミューリアクター」四国計測工業
  2. LEGO ゲーム アプローチ
  3. 低い電位で多電子移動を引き起こす「ドミノレドックス反応」とは!?…
  4. 変幻自在にジアゼンへ!アミンを用いたクロスカップリングの開発
  5. カリフォルニア大学バークレー校・化学科への学部交換留学
  6. 【速報】2013年イグノーベル化学賞!「涙のでないタマネギ開発」…
  7. 水を還元剤とする電気化学的な環境調和型還元反応の開発:化学産業の…
  8. インターネットを活用した英語の勉強法

注目情報

ピックアップ記事

  1. Co(II)-ポルフィリン触媒を用いた酸素酸化によるフェノールのカップリング反応
  2. コンラッド・リンパック キノリン合成 Conrad-Limpach Quinoline Synthesis
  3. パット・ブラウン Patrick O. Brown
  4. 熊田 誠 Makoto Kumada
  5. 三菱ケミカルと三井化学がバイオマス原料由来ポリエステルの関連特許に係るライセンス契約を締結
  6. 若手研究者vsノーベル賞受賞者 【化学者とは?!編】
  7. 中村 正治 Masaharu Nakamura
  8. 味の素グループの化学メーカー「味の素ファインテクノ社」を紹介します
  9. ビス[α,α-ビス(トリフルオロメチル)ベンゼンメタノラト]ジフェニルサルファー : Bis[alpha,alpha-bis(trifluoromethyl)benzenemethanolato]diphenylsulfur
  10. 痔治療の新薬で大臣賞 経産省が起業家表彰

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年3月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー