[スポンサーリンク]

archives

水溶性アクリルアミドモノマー

[スポンサーリンク]

概要

皆さまはポリマー材料と聞いたとき、何をイメージしますか?身の回りにある樹脂製品から特殊な機能性高分子など、それぞれ思い浮かべるものは違うのではないでしょうか。このようにポリマー材料は様々な用途で使われています。その魅力はモノマーや重合条件などによって物性が大きく変わる点です。今回は、アクリルアミド骨格を有するモノマーに着目して、その特性やポリマー材料としたときの用途などをご紹介します。

アクリルアミドポリマーの物性

一般的にアクリルアミドポリマーは次のような特長を持つと言われています。

・水溶性ポリマーとして知られる

・生体適合性が高く、バイオマテリアルとして注目されている

・架橋度によって、増粘剤から親水性コーティングまで用途の幅が広い

アクリルアミドポリマーの具体的な利用例は、電気泳動用のゲル、保水剤、吸収剤、感温性ゲル材料、組織培養培地、土壌改良剤などであり、総じて「水」に関わる分野で使われます。アクリル板としておなじみのPMMA(ポリメタクリル酸メチル)や、発泡スチロールで用いられるPS(ポリスチレン)とは、かなり性質が異なることがお分かりいただけるかと思います。

アクリルアミドモノマーの種類

富士フイルム和光純薬では、これらの機能性高分子の開発に有用なアクリルアミドモノマーを取り扱っております(検索ページはこちら)。代表的なモノマーの構造と、これを原料としたポリマーの機能や用途をいくつか示します。(表1)

表1  代表的なアクリルアミド誘導体とポリマーの機能・用途

これ以外にも多くのアクリルアミド誘導体がありますが、特にユニークなものとして、ベタイン構造を有する単官能アクリルアミドと、官能基の数や結合位置、主鎖の構造が異なる多官能アクリルアミド(2,3,4官能)をピックアップします。

高親水性単官能メタクリルアミドモノマー(FOM-03010)

<特長>  FOM-03010は、同一分子内にアミド構造とベタイン構造を有しており、非常に高い親水性を示します。親疎水性の指標となるCLogP値で比較すると、汎用の親水性モノマーは-2~+1程度であるのに対して、FOM-03010は-10を示し、はるかに高い親水性を示しています(図1)。水に50 wt%以上溶解、さらにメタノールなどにも容易に溶けます。また、耐加水分解性にも優れています。

図1. FOM-03010のCLogP値

<用途>  FOM-03010を含むポリマーは、培養容器などの細胞を扱う器具のコーティング剤として有効です。FOM-03010とメタクリル酸ブチルとの共重合体をガラス表面に塗布し、マウス繊維芽細胞(3T3細胞)の付着性を確認すると、共重合体を塗布した右側では細胞の付着が見られず、細胞非付着性を示すことが観察されました。

図2. FOM-03010共重合体をコーティング剤とした細胞非付着性評価

疎水性相互作用を抑制できる親水性コーティングはバイオ系でよく用いられており、基材表面へのタンパク質や細胞の付着を防止する有効な方法になります。例えば、医学分野では人工臓器やカテーテルなどを対象として血栓の形成を抑制します。また、歯学分野では細菌の付着を防止する効果が期待できます。

水溶性多官能アクリルアミドモノマー(FOM-03006, -03007, -03008, -03009)

既存の架橋剤は水への溶解性が低く、皮膚刺激性や感作性を有するものが多い課題がありました。これに対してFOM-03006は高い水溶性、硬化性、安定性(耐加水分解性)、安全性を併せ持った多官能アクリルアミドモノマー(架橋剤)として開発されました。類似する化合物として、官能基の数や結合位置、主鎖の異なるタイプFOM-03007, -03008, -03009があります(表2)。

表2  多官能アクリルアミド(2,3,4官能)の構造と物性

ポリマーは架橋の様式で物性が大きく変化します。そのため、求めるポリマーの物性や使用する目的に合わせた架橋剤の種類や添加量の最適化が重要となってきます。ここからは、FOM-03006を例として、多官能アクリルアミドモノマーの特長や用途についてご紹介します。

<FOM-03006の特長>  FOM-03006は、水に50 wt%溶解するほか、メタノールなどの親水性溶媒にも容易に溶けます。また、酸性~塩基性水溶液中での耐加水分解性に優れています(図3)。同じくアクリルアミド骨格を持つ2官能性のTM-1と比較しても明確な違いがあります。ポリマー材料の用途を考えた場合に確認すべき安全性評価においても、全て問題ないことが確認されました(皮膚刺激性・腐食性:PII = 0、無刺激、皮膚感作性:陰性、変異原性(Ames):陰性)。

<FOM-03006の用途 ①親水性コーティング>  FOM-03006と水溶性の光ラジカル開始剤を水に溶解し、基材に塗布した後に光を照射すると水に不溶な硬化膜が形成できます。

 

FOM-03010(単官能) / FOM-03006(架橋剤)/ 光ラジカル開始剤 = 30 / 67 / 3の組成物から得られる光硬化膜(コートA)は、親水性に優れており、水接触角が小さくなります(表3)。なお、コートAはPET基板に塗布、乾燥 (50℃/5分)、光硬化 (3 J/cm2)して作成しています。光硬化には高圧水銀灯を使用し、露光量はUV-Aで管理しています。

表3 コートAの光硬化膜の水接触角

 

<FOM-03006の用途 ②硬化収縮の小さいコーティング膜>   市販の多官能アクリルモノマーをFOM-03006に置き換えると、硬化収縮が小さいコーティング膜ができます。PETフィルムに塗布して硬化させた結果、FOM-03006を用いたコートBは、市販の多官能アクリルモノマーを用いたコートCと比較して、カールが少ないことが確認されました。

※ コートB:HEMA  / FOM-03006/ 光ラジカル開始剤 = 50 / 47 / 3 ※ コートC:HEMA / 市販多官能モノマー/ 光ラジカル開始剤 = 50 / 47 / 3

FOM-03006のその他の用途

歯科材料:   親水性モノマーとして知られるHEMA(2-hydroxyethyl methacrylate)の代替材料として、性能や安全性の改善が期待されるFOM-03006が検討されています。1), 2)

ヒドロゲルの架橋剤:   ポリアクリルアミドから構成されたヒドロゲルは、一般に高架橋剤濃度では脆く、あまり伸びずに破断しやすいものとなり、低架橋剤濃度では伸びやすく、応力がかかりにくいものとなります。4官能のFOM-03006を架橋剤として用いると、低架橋剤濃度の条件でより高い応力まで破断せず、元の形状に戻るアクリルアミドポリマーが得られたと報告されています。3)

おわりに

今回は水溶性モノマーについてご紹介しました。いかがでしたでしょうか?水溶性のモノマーと架橋剤を用いた水系コーティング技術は、産業分野において揮発性有機化合物(VOC: Volatile Organic Compounds)の低減につながります。また生体適合性の高さから、医療、バイオサイエンス領域での用途開発も期待されています。機能性材料としてアクリルアミドポリマーのポテンシャルはまだまだありそうです。皆さまの研究にもぜひお役立てください!詳しくは関連ページからご確認いただけます。

引用文献

1)Pedano, M. S. , Yoshihara, K. , Li, X. , Camargo, B. , Landuyt, V. K. , Meerbeek, B. V.: Mater. Sci. Eng. C., 126, 112105 (2021). DOI: 10.1016/j.msec.2021.112105

2)Yoshihara, K. , Nagaoka, N. , Okihara, T. , Irie, M. , Matsukawa, A. , Pedano, M. S. , Maruo, Y. , Yoshida, Y. , Meerbeek, B. V. :J. Mater. Chem. B., 8, 5320 (2020). DOI:10.1039/d0tb00079e

3) 吉田孝太郎, 柴田充弘, 寺本直純 : “ポリアクリルアミドゲルの圧縮物性における架橋剤の官能基数の影響”, 第 28 回ポリマー材料フォーラム (2019).

関連ページ

富士フイルム和光純薬 試薬ページ 水溶性アクリルアミドモノマー

富士フイルム和光純薬 化成品ページ 水系硬化材料

 

Avatar photo

富士フイルム和光純薬

投稿者の記事一覧

「次の科学のチカラとなり、人々の幸せの源を創造する」
みなさまの研究開発を支えるチカラとなるべく、
これからも高い技術とクオリティで、次代のニーズにお応えします。
Twitterでの情報提供を始めました。

関連記事

  1. 光照射によって結晶と液体を行き来する蓄熱分子
  2. 思わぬ伏兵・豚インフルエンザ
  3. ダン・シェヒトマン博士の講演を聞いてきました。
  4. 科学ボランティアは縁の下の力持ち
  5. ビニグロールの全合成
  6. マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は…
  7. マテリアルズ・インフォマティクスにおける回帰手法の基礎
  8. comparing with (to)の使い方

注目情報

ピックアップ記事

  1. 藤原・守谷反応 Fujiwara-Moritani Reaction
  2. 有機合成化学協会誌2018年3月号:π造形科学・マグネシウムカルベノイド・Darzens反応・直接的触媒的不斉アルキニル化・光環化付加反応
  3. 高分子と高分子の反応も冷やして加速する
  4. 【誤解してない?】4s軌道はいつも3d軌道より低いわけではない
  5. 危険ドラッグ:創薬化学の視点から
  6. 第29回「安全・簡便・短工程を実現する」眞鍋敬教授
  7. アルケンのE/Zをわける
  8. 工程フローからみた「どんな会社が?」~半導体関連
  9. ニュースタッフ参加
  10. Essential細胞生物学

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年3月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP