[スポンサーリンク]

一般的な話題

ハメット則

[スポンサーリンク]

有機分子の反応性は電子のふるまいによって説明される。電子の分布は化合物の構造により当然異なる。つまり構造が違えば反応性も違うことになる。

実験科学である有機化学においては、反応性の議論は重要な問題である。また、反応性の議論から反応機構が導けることも少なくない。

反応性を定量化しようとする試みは様々になされてきたが、代表的なものが今回のテーマでもあるハメット則(Hammett’s Rule, Hammett equation)である。今回は、ハメット則とは何かに始まり、反応機構解明における意義について述べてみたい。

 

Hammett則とは??

アメリカの化学者L.P Hammettは、m-/p-置換安息香酸の酸解離反応における平衡定数の対数値(KR)と、同じ置換基を持つ安息香酸誘導体を別反応に伏したときの速度定数(kR)の対数値の間に、直線的比例関係があることを見いだした。このような関係(Hammettプロット)は下記のようなケン化反応に限らず、様々な芳香族化合物の反応で経験的に成り立つことが分かっている。

Hammett_1
 

無置換(R=H)の場合の平衡定数に添え字Hをつけて表したとき、この比例関係は比例定数をρとして以下のような式で記述される。

Hammett_2

 

この経験則こそがハメット則と呼ばれるものである。σ = log(KR/KH)は置換基(R)ごとに定まる定数で置換基定数(substituent constant)と呼ばれる。端的には置換基の電子供与/求引の程度を定量化した値といえる。

σ値が正であれば電子求引性置換基(=置換安息香酸の方が無置換より酸性が強い)σが負だと電子供与性置換基となる。

代表的なσ値を以下にあげておく(Chem.Rev. 1991, 91, 165より引用)。メタ置換、パラ置換によって値が異なることが分かると思う。

Hammett_3

 

比例定数ρは反応に固有の値で、反応定数(reaction constant)と呼ばれる。 ρ値が正の反応は電子求引基(σ>0)によって反応が加速され、負の反応は減速される反応であることを示す。代表的な反応におけるρ値を以下に示す。

反応(記したもの以外は25℃) ρ
ArCOOH → ArCOO + H+ (基準) 1.00
ArCH2COOH → ArCH2COO + H+ 0.56
ArOH → ArO + H+ 2.23
ArCOOEt  酸加水分解 0.03
ArCOOEt + OH → ArCOO + EtOH 2.51
ArCH3 + Br2 → ArCH2Br (ラジカル臭素化,80℃) -1.37
ArNMe3 + MeI → ArNMe3+I (35℃) -3.30

 

Hammettプロットが直線関係である反応は、置換基の誘起効果に左右される。いくつか例外はあるものの、反応がイオン性中間体を経由して進行し、またその反応機構が一定しているとき、プロットは直線を示すことが多い。

仮に反応が新規であっても、反応速度の測定からρ値を算出することが出来る。このρ値の正負・絶対値から、反応を進行させるには電子供与/求引基のどちらが有利かを判断することが出来、それに従って反応機構が検討される(具体例は後述する)。

 

ハメット則を補正する

Hammettは置換基の誘起効果のみを考慮して理論を組み立てたが、実際には置換基がもたらす共鳴効果も無視できない要素である。

共鳴効果の寄与が大きな反応のHammettプロットは、直線から系統的にずれることが知られている。そもそもオリジナルのHammett則は誘起効果しか問題としておらず、その他の要因を考え合わせると直線からずれるのは当然ともいえる。

これらの共鳴効果を補正する目的で、置換基定数σ(パラ位の電子求引性共鳴を考慮)、σ+(パラ位の電子供与性共鳴を考慮)が提案されている。また、共鳴効果を除外する目的で、安息香酸ではなくベンジル酸の傘下入り定数を基準とした置換基定数σ0が定義されている。

また、反応ごとに遷移状態の共鳴寄与の要求性は異なる。湯川泰秀と都野雄甫はこれらを考慮に入れ、拡張Hammett式である湯川-都野の式を提唱した。rは反応の共鳴寄与要求性を表すパラメータであり、rが大きいほど、共鳴効果が反応速度に及ぼす影響は大きくなる。

Hammett_4(電子求引基の場合はσ+ではなくσ

脂肪族化合物では置換基の立体効果も考慮しなければならない。R.W.Taftは、エステルRCOOEtの加水分解が酸性条件で極性効果をほとんど受けない(ρ≒0)一方、アルカリ加水分解は大きな極性効果を受ける(ρ≠0)ことに着目し、この反応速度の差をもとに立体効果の定量化を行い、Taftの式を提唱した。

Hammett_5

ρ*σ*が極性効果、δEsが立体効果の度合いを示す。両効果が完全に分離された表現がなされているのがTaftの式の特徴である。

 

ハメット則から反応機構を見積もる

反応定数ρは、(律速段階の)反応遷移状態の極性を反映している。たとえば、ρ>0の反応は電子求引基により加速されることを上で述べたが、これはすなわち遷移状態が負電荷を帯びているということを示唆している。ρ<0の場合は正電荷を帯びていることになる。

この事実が反応機構解明に役立つ一例として、ベンジル位の求核置換反応を取りあげてみる。

仮想的に下のような置換反応を考えてみる。反応式のみからは、SN1とSN2どちらの機構で進んでいるのかは分からない。

Hammett_6
ここでSN1/SN2の遷移状態を考えてみる。以下の図が示すように律速段階において、SN1の遷移状態は正電荷を帯び、SN2の遷移状態は負電荷を帯びていることがわかる。

Hammett_7
反応定数の性質から、ρ>0では負電荷遷移状態(SN2機構)をとり、ρ<0ならば正電荷遷移状態(SN1機構)をとると判断できる。実はこの反応でHammettプロットを書くと、一般に下のようにσ=0を境に反応定数の正負が逆転する。つまりこの置換反応は、置換基Rの種類で反応機構が変わってしまうことが分かる。

Hammett_8
 置換基により律速段階・反応機構が変わってしまう他の例として、イミン生成反応がある。Rが電子求引性の時はStep1が律速、電子供与性の時はStep2が律速になる。これもHammettプロットで上と同様の議論を行うことにより説明される。

Hammett_9
ハメット則は経験則とはいえ、適用可能反応は数百例以上と非常に多い。このことも理論の地位を高めている一因なのであろう。上手く使って研究を進めたい。

(2002.4.7執筆、 by cosine)
(※本記事は以前より公開されていたものを加筆して「つぶやき」に移行したものです)

 

 関連書籍

[amazonjs asin=”4759800425″ locale=”JP” title=”理論有機化学 反応編”][amazonjs asin=”4807905325″ locale=”JP” title=”反応速度論”]
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 究極の黒を炭素材料で作る
  2. ポルフィリン化学100年の謎を解明:calix[3]pyrrol…
  3. ジャーナル編集ポリシーデータベース「Transpose」
  4. 重医薬品(重水素化医薬品、heavy drug)
  5. [5+1]環化戦略による触媒的置換シクロヘキサン合成
  6. 有機合成化学者が不要になる日
  7. アメリカ大学院留学:TAの仕事
  8. 二酸化塩素と光でプラスチック表面を機能化

注目情報

ピックアップ記事

  1. ユシロ化学工業ってどんな会社?
  2. 根岸 英一 Eiichi Negishi
  3. これからの理系の転職について考えてみた
  4. 子育て中の40代女性が「求人なし」でも、専門性を生かして転職を実現した秘訣とは
  5. メリフィールド氏死去 ノーベル化学賞受賞者
  6. リッター反応 Ritter Reaction
  7. キセノン (xenon; Xe)
  8. 有機アジド(1):歴史と基本的な性質
  9. 2008年ノーベル化学賞『緑色蛍光タンパクの発見と応用』
  10. デヴィッド・クレネマン David Klenerman

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2002年4月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

第18回 Student Grant Award 募集のご案内

公益社団法人 新化学技術推進協会 グリーン・サステイナブルケミストリーネットワーク会議(略称:JAC…

杉安和憲 SUGIYASU Kazunori

杉安和憲(SUGIYASU Kazunori, 1977年10月4日〜)は、超分…

化学コミュニケーション賞2024、候補者募集中!

化学コミュニケーション賞は、日本化学連合が2011年に設立した賞です。「化学・化学技術」に対する社会…

相良剛光 SAGARA Yoshimitsu

相良剛光(Yoshimitsu Sagara, 1981年-)は、光機能性超分子…

光化学と私たちの生活そして未来技術へ

はじめに光化学は、エネルギー的に安定な基底状態から不安定な光励起状態への光吸収か…

「可視光アンテナ配位子」でサマリウム還元剤を触媒化

第626回のスポットライトリサーチは、千葉大学国際高等研究基幹・大学院薬学研究院(根本研究室)・栗原…

平井健二 HIRAI Kenji

平井 健二(ひらい けんじ)は、日本の化学者である。専門は、材料化学、光科学。2017年より…

Cu(I) の構造制御による π 逆供与の調節【低圧室温水素貯蔵への一歩】

2024年 Long らは、金属有機構造体中の配位不飽和な三配位銅(I)イオンの幾何構造を系統的に調…

可視光活性な分子内Frustrated Lewis Pairを鍵中間体とする多機能ボリルチオフェノール触媒の開発

第 625 回のスポットライトリサーチは、名古屋大学大学院 工学研究科 有機・高…

3つのラジカルを自由自在!アルケンのアリール-アルキル化反応

アルケンの位置選択的なアリール-アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP