[スポンサーリンク]

一般的な話題

有機の王冠

[スポンサーリンク]

皆さんは「有機の王冠」を知っていますか?

それは冒頭図のような形をした美しい化合物のことです。名前もそのまま、クラウンエーテル(crown ether)と呼ばれています。

実はこの分子は何かと面白い性質を持つことが分かっています。今回はこの分子について簡単に紹介します。

王冠いろいろ

クラウンエーテルは1967年、Du Pont社の研究員Charles Pedersenによって発見されました。この分子はx-crown-y-etherという一般式で命名されます。xは環を構成する原子数、yは含まれる酸素原子の数です。

たとえば上の化合物では炭素・酸素あわせて18原子で環が構成され、そのうち6個が酸素原子なので18-crown-6-etherと命名されます。「18-crown-6」のように最後のetherは省略されることもしばしばあります。

クラウンエーテル類は環のサイズや構成成分・元素の違いなどにより、いろいろな種類が存在しています。

crown_ether_2

 

クラウンエーテルの合成

Pedersenは当初、化合物1の合成を目的として、下に示すような合成経路を考えました。このとき白色繊維状結晶の副生成物2がごく微量生成していることを発見しました。これがクラウンエーテルの起源です。セレンディピティとして知られる発見例の一つだったのです。

crown_ether_3

より一般的な合成法も、このPedersenの条件が基礎となっています。普通の条件では分子間反応が競合してオリゴマー・ポリマーが出来てくるのですが、環の径に合わせた金属カチオンを共存させておく工夫によって、分子内反応を優先させることができます。これを鋳型合成法と言います。下の場合はナトリウムカチオンが鋳型になっているわけですね。

templated_2
 

  クラウンエーテルの性質

クラウンエーテルの独特かつ面白い特性は、(上記の合成法からも想像がつくことですが)空孔のサイズに合った金属を非常に強く捕まえる(包摂する)ことにあります。たとえば無機化合物のKMnO4はイオン性化合物のため有機溶媒に不溶です。しかし、18-crown-6-etherが存在すると、カリウムイオンがクラウンエーテルに捕捉され、ベンゼンをはじめとする有機溶媒に溶けるようになります。

crown_ether_4

こうすることでKF、KCN、NaN3などに代表される難溶性アルカリ金属塩を有機溶媒中で効果的に用いることが出来るようになり、有機合成の技術が進みました。またクラウンエーテル包摂によって存在する対アニオンはほとんど溶媒和されていないため、非常に反応性が高くなります。クラウンエーテルという名称は、化合物の形状と、あたかもカチオンに冠をかぶせるかのごとく錯形成することの2点から名付けられたものです。

錯体の安定度は、金属カチオンのイオン径と、環の空孔径の相対的な大きさに依存します。たとえば15-crown-5-etherの穴の大きさはナトリウムイオンに対してちょうどよい大きさです。リチウムにフィットするクラウンエーテルもあります。

crown_ether_5
クラウンエーテルの性質とその有用性が明らかになるにつれ、多くの類縁体が合成されるに至りました。ドナー原子として酸素原子以外を含むものや、二環式・三環式の物質も合成されました。その中でも窒素を含むもので有名なものに、クリプタンド(cryptand)と呼ばれる化合物があります。ギリシア語で”空洞”を意味する名前を持ち、クラウンエーテル以上の強さで金属と錯形成して、塩を有機溶媒に可溶化させることができます。

cryptand_1

 

クラウン化合物の応用例

クラウンエーテル類は、そのユニークな特性を最大限に活用した各種応用に今日されています。

有機合成

有機合成へは最もよく使われます。重要なポイントは既に述べたとおり、(1)無機塩を非極性溶媒に可溶化させること、(2)溶媒和されていない対アニオンを作り出し、高活性な状態にすること、の二つです。

たとえば溶媒和されていないアニオンは嵩が小さいため、通常では立体障害が大きく攻撃しにくい反応点を攻撃することが可能となります。分極率の小さいいわゆる”hard”なアニオンほど活性化度が高くなる傾向にあります。たとえば普段は求核試薬にならないKFが、クラウンエーテルの添加によって求核置換を起こすようになるのは好例です。

また、相間移動触媒として働かせる事例も多数もあります。

 

イオン分離

クラウンエーテルの金属選択的錯形成能を利用して、金属イオンを分離する方法が初期に開発されました。選択性の高さが最大の長所です。その後、重合させることでイオン交換樹脂にしたものなども多数開発されました。

光学分割

クラウンエーテルが金属カチオンのみならず、一級アンモニウムカチオンなどとも相互作用できることがPederson自身によって見いだされました。その後、光学活性クラウンエーテルを用いたアミンの光学分割法が研究されました。

crown_ether_7

 

イオン運搬体としての利用

クラウンエーテルの選択性は、優れたイオン輸送体の可能性ととらえることもできます(同様の働きを示す化合物としてシクロデキストリンなどあります)。合成イオノフォアとして、生体内イオンの機能解明のツールへと応用すべく研究が進められてもいます。例えば以下は分子スイッチ部であるジアリールエテンを組み込み、光刺激によってイオンを捕まえたり離したり、ということを可能にしています。

crown_ether_9

 

独特の性質を持つ化合物、クラウンエーテル。構造の美しさもさることながら、非常に魅力たっぷりな分子だと思いませんか?

(※本記事は以前より公開されていたものを加筆修正し、「つぶやき」に移行したものです)

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ICMSE International Conference o…
  2. ラジカル種の反応性を精密に制御する-プベルリンCの世界初全合成
  3. レーザー光で実現する新たな多結晶形成法
  4. 化学者に役立つWord辞書
  5. ケミカル数独
  6. 小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで…
  7. 文具に凝るといふことを化学者もしてみむとてするなり⑰:MacBo…
  8. 表面処理技術ーChemical Times特集より

注目情報

ピックアップ記事

  1. 君には電子のワルツが見えるかな
  2. 表裏二面性をもつ「ヤヌス型分子」の合成
  3. 桝太一が聞く 科学の伝え方
  4. 兄貴達と化学物質
  5. 同位体効果の解釈にはご注意を!
  6. 触媒のチカラで拓く位置選択的シクロプロパン合成
  7. 千葉県産の天然資源「ヨウ素」が世界の子どもたちを救う
  8. 化学五輪、日本代表4人の高校生が「銅」獲得
  9. イベルメクチン /Ivermectin
  10. Altmetric Score Top 100をふりかえる ~2018年版~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2002年2月
 123
45678910
11121314151617
18192021222324
25262728  

注目情報

最新記事

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

ミトコンドリア内タンパク質を分解する標的タンパク質分解技術「mitoTPD」の開発

第 631 回のスポットライトリサーチは、東北大学大学院 生命科学研究科 修士課程2…

永木愛一郎 Aiichiro Nagaki

永木愛一郎(1973年1月23日-)は、日本の化学者である。現在北海道大学大学院理学研究院化学部…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP