皆さんは「有機の王冠」を知っていますか?
それは冒頭図のような形をした美しい化合物のことです。名前もそのまま、クラウンエーテル(crown ether)と呼ばれています。
実はこの分子は何かと面白い性質を持つことが分かっています。今回はこの分子について簡単に紹介します。
王冠いろいろ
クラウンエーテルは1967年、Du Pont社の研究員Charles Pedersenによって発見されました。この分子はx-crown-y-etherという一般式で命名されます。xは環を構成する原子数、yは含まれる酸素原子の数です。
たとえば上の化合物では炭素・酸素あわせて18原子で環が構成され、そのうち6個が酸素原子なので18-crown-6-etherと命名されます。「18-crown-6」のように最後のetherは省略されることもしばしばあります。
クラウンエーテル類は環のサイズや構成成分・元素の違いなどにより、いろいろな種類が存在しています。
クラウンエーテルの合成
Pedersenは当初、化合物1の合成を目的として、下に示すような合成経路を考えました。このとき白色繊維状結晶の副生成物2がごく微量生成していることを発見しました。これがクラウンエーテルの起源です。セレンディピティとして知られる発見例の一つだったのです。
より一般的な合成法も、このPedersenの条件が基礎となっています。普通の条件では分子間反応が競合してオリゴマー・ポリマーが出来てくるのですが、環の径に合わせた金属カチオンを共存させておく工夫によって、分子内反応を優先させることができます。これを鋳型合成法と言います。下の場合はナトリウムカチオンが鋳型になっているわけですね。
クラウンエーテルの性質
クラウンエーテルの独特かつ面白い特性は、(上記の合成法からも想像がつくことですが)空孔のサイズに合った金属を非常に強く捕まえる(包摂する)ことにあります。たとえば無機化合物のKMnO4はイオン性化合物のため有機溶媒に不溶です。しかし、18-crown-6-etherが存在すると、カリウムイオンがクラウンエーテルに捕捉され、ベンゼンをはじめとする有機溶媒に溶けるようになります。
こうすることでKF、KCN、NaN3などに代表される難溶性アルカリ金属塩を有機溶媒中で効果的に用いることが出来るようになり、有機合成の技術が進みました。またクラウンエーテル包摂によって存在する対アニオンはほとんど溶媒和されていないため、非常に反応性が高くなります。クラウンエーテルという名称は、化合物の形状と、あたかもカチオンに冠をかぶせるかのごとく錯形成することの2点から名付けられたものです。
錯体の安定度は、金属カチオンのイオン径と、環の空孔径の相対的な大きさに依存します。たとえば15-crown-5-etherの穴の大きさはナトリウムイオンに対してちょうどよい大きさです。リチウムにフィットするクラウンエーテルもあります。
クラウン化合物の応用例
クラウンエーテル類は、そのユニークな特性を最大限に活用した各種応用に今日されています。
有機合成
有機合成へは最もよく使われます。重要なポイントは既に述べたとおり、(1)無機塩を非極性溶媒に可溶化させること、(2)溶媒和されていない対アニオンを作り出し、高活性な状態にすること、の二つです。
たとえば溶媒和されていないアニオンは嵩が小さいため、通常では立体障害が大きく攻撃しにくい反応点を攻撃することが可能となります。分極率の小さいいわゆる”hard”なアニオンほど活性化度が高くなる傾向にあります。たとえば普段は求核試薬にならないKFが、クラウンエーテルの添加によって求核置換を起こすようになるのは好例です。
また、相間移動触媒として働かせる事例も多数もあります。
イオン分離
クラウンエーテルの金属選択的錯形成能を利用して、金属イオンを分離する方法が初期に開発されました。選択性の高さが最大の長所です。その後、重合させることでイオン交換樹脂にしたものなども多数開発されました。
光学分割
クラウンエーテルが金属カチオンのみならず、一級アンモニウムカチオンなどとも相互作用できることがPederson自身によって見いだされました。その後、光学活性クラウンエーテルを用いたアミンの光学分割法が研究されました。
イオン運搬体としての利用
クラウンエーテルの選択性は、優れたイオン輸送体の可能性ととらえることもできます(同様の働きを示す化合物としてシクロデキストリンなどあります)。合成イオノフォアとして、生体内イオンの機能解明のツールへと応用すべく研究が進められてもいます。例えば以下は分子スイッチ部であるジアリールエテンを組み込み、光刺激によってイオンを捕まえたり離したり、ということを可能にしています。
独特の性質を持つ化合物、クラウンエーテル。構造の美しさもさることながら、非常に魅力たっぷりな分子だと思いませんか?
(※本記事は以前より公開されていたものを加筆修正し、「つぶやき」に移行したものです)