[スポンサーリンク]

odos 有機反応データベース

可逆的付加-開裂連鎖移動重合 RAFT Polymerization

[スポンサーリンク]

概要

可逆的付加-開裂連鎖移動重合(Reversible Addition-Fragmentation Chain Transfer Polymerization, RAFT重合)は制御リビングラジカル重合法の一種である。

チオカルボニル化合物を連鎖移動剤として用いてラジカル重合を行うことで、分子量分布の狭いポリマーを、分子量を制御しつつ合成できる。

ラジカルを活性種とする特性ゆえに官能基性モノマーが使用可能であり、水溶媒でも重合可能である。原子移動重合法(ATRP)と異なり、系にハロゲン・重金属などを含まないこと、ポリマー両末端を官能基化できるなどの特徴をもつ。

この特性ゆえに、とりわけ生体適合材料への応用が期待されている手法である。

 

基本文献

・ Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, K.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1998, 31, 5559. DOI: 10.1021/ma9804951
・ Moad, G.; Rizzardo, E.; Thang, S. H. Aust. J. Chem. 2005, 58, 379. doi:10.1071/CH05072

<review>
・Moad, G.; Rizzardo, E.; Thang, S. H. Polymer 2008, 49, 1079. doi:10.1016/j.polymer.2007.11.020
・Semsarilar, M.; Perrier, S. Nat. Chem. 2010, 2, 811. doi: 10.1038/nchem.853
・Moad, G.; Rizzardo, E.; Thang, S. H. Chem. Asian J. 2013, 8, 1634. DOI: 10.1002/asia.201300262
・Keddle, D. J. Chem. Soc. Rev. 2014, 43, 496. DOI: 10.1039/C3CS60290G

 

反応機構

ラジカル成長末端はチオカルボニル基と結合し、もう片方の鎖-硫黄原子が切断されて追い出される形でモノマーと反応する。このように2つの鎖が並行して重合をおこす。活性種の濃度を低くできるため、副反応が起こりにく分子量分布の狭いポリマーができる。 RAFT_2.gif (Sigma-Aldrichのページより引用)

 

反応例

RAFT連鎖移動剤の構造を変えることで、様々な形状のポリマーを合成することが出来る(参照:Sigma-Aldrichのページ)。ジチオエステル型では一方向伸長が起きるが、トリチオカーボネート型では二方向伸長が起きる。

 

関連動画

実験手順

 

実験のコツ・テクニック

 

参考文献

 

関連書籍

[amazonjs asin=”3319060767″ locale=”JP” title=”Novel Macromolecular Architectures via a Combination of Cyclodextrin Host/Guest Complexation and RAFT Polymerization (Springer Theses)”][amazonjs asin=”3527319247″ locale=”JP” title=”Handbook of RAFT Polymerization”][amazonjs asin=”384339153X” locale=”JP” title=”Synthesis of Nano-Scale Core-Shell Particles by Raft Polymerizations”][amazonjs asin=”0841269963″ locale=”JP” title=”Controlled/Living Radical Polymerization: Progress in RAFT, DT, NMP & OMRP (Acs Symposium Series)”][amazonjs asin=”0080442862″ locale=”JP” title=”The Chemistry of Radical Polymerization, Second Edition”]

 

関連リンク

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. マイケル付加 Michael Addition
  2. ポロノフスキー開裂 Polonovski Fragmentati…
  3. リンドラー還元 Lindlar Reduction
  4. カラッシュ・ソスノフスキ-酸化 Kharasch-Sosnovs…
  5. ニトロンの1,3-双極子付加環化 1,3-Dipolar Cyc…
  6. アリルオキシカルボニル保護基 Alloc Protecting …
  7. ベンジル保護基 Benzyl (Bn) Protective G…
  8. ウルマンカップリング Ullmann Coupling

注目情報

ピックアップ記事

  1. 臭素系難燃剤など8種を禁止 有害化学物質の規制条約
  2. ロバート・ノールズ Robert R. Knowles
  3. 有機合成テクニック集[ケムステ版]
  4. バイオ医薬 基礎から開発まで
  5. 【詳説】2013年イグノーベル化学賞!「涙のでないタマネギ開発」
  6. 企業研究者のためのMI入門③:避けて通れぬ大学数学!MIの道具として数学を使いこなすための参考書をご紹介 mi3
  7. コールドスプレーイオン化質量分析法 Cold Spray Ionization Mass Spectrometry (CSI-MS)
  8. エド・ボイデン Edward Boyden
  9. アセトアルデヒドが香料に 食品添加物として指定了承
  10. ここまでできる!?「DNA折り紙」の最先端 ② ~巨大な平面構造体 編~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年9月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー