[スポンサーリンク]

A

原子移動ラジカル重合 Atom Transfer Radical Polymerization

[スポンサーリンク]

 

概要

ラジカル重合形式は二量化や水素引き抜きによる停止反応が問題とされてきたが、遷移金属錯体+有機ハライドをラジカル開始剤系として用いる事で、ドーマント種を関与させたリビング重合系にすることが可能となった。

ポリマー末端部は開始剤部の原子団でキャップされた形になっており、全体として原子団が移動して重合が完了したように見える。このため原子移動ラジカル重合(Atom Transfer Radical Polymerization; ATRP)という名前がついている。

ラジカル重合であるため官能基許容性が高く、分子量分布が非常に狭い(Mw/Mn=1.1-1.3)ことも特徴である。

基本文献

  • ・Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995, 28, 1721. doi:10.1021/ma00109a056
  • Wang, J.; Matyjaszewski, K. J. Am. Chem. Soc.1995117, 5614. doi:10.1021/ja00125a035

Review

  • Matyjaszewski, K.; Xia, J. Chem. Rev. 2001101, 2921. DOI: 10.1021/cr940534g
  • Kamigaito, M.; Ando, T.; Sawamoto, M. Chem. Rev. 2001101, 3689. DOI: 10.1021/cr9901182
  • Pintauer, T.; Matyjaszewski, K. Chem. Soc. Rev. 200837, 1087. doi:10.1039/b714578k

 

開発の歴史

1995年にカーネギーメロン大学のクリストフ・マテャシェフスキー(銅触媒) 、京都大学の澤本光男(ルテニウム触媒)により同時期・独立に報告された。現在では(2012年)ATRPに関して12000報超の報告があり、工業的にも用いられている。近年両者はノーベル化学賞受賞候補者として頻繁に紹介されている。

クリストフ・マテャシェフスキーと澤本光男

クリストフ・マテャシェフスキーと澤本光男

 

反応機構

ラジカル成長末端はハロゲンと再結合し、活性末端とドーマント種(一時的に成長反応を休止している状態)との平衡過程にある。平衡はドーマント種側に偏っているために、活性種の濃度は低くなり、副反応が起こりにくくなっている。
ATRP_2.gif

反応例

実験手順

実験のコツ・テクニック

参考文献

 

関連反応

関連書籍

[amazonjs asin=”0841238545″ locale=”JP” title=”Advances in Controlled/Living Radical Polymerization (Acs Symposium Series)”][amazonjs asin=”0841239916″ locale=”JP” title=”Controlled/Living Radical Polymerization: From Synthesis to Materials (Acs Symposium Series)”][amazonjs asin=”B00CLZSCHA” locale=”JP” title=”Handbook of Vinyl Polymers: Radical Polymerization, Process, and Technology, Second Edition: Radical Polymerization and Technology (Plastics Engineering)”][amazonjs asin=”3527324925″ locale=”JP” title=”Controlled and Living Polymerizations: From Mechanisms to Applications”]

 

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ボロン酸触媒によるアミド形成 Amide Formation C…
  2. ピーターソンオレフィン化 Peterson Olefinatio…
  3. メーヤワイン試薬 Meerwein Reagent
  4. フリーデル・クラフツ アシル化 Friedel-Crafts A…
  5. TEMPO酸化 TEMPO Oxidation
  6. グレーサー反応 Glaser Reaction
  7. 超原子価ヨウ素 Hypervalent Iodine
  8. ゲヴァルト チオフェン合成 Gewald Thiophene S…

注目情報

ピックアップ記事

  1. The Sol-Gel Handbook: Synthesis, Characterization and Applications
  2. ランシラクトンCの全合成と構造改訂-ペリ環状反応を駆使して-
  3. 10手で陥落!(+)-pepluanol Aの全合成
  4. M.G.フィン M. G. Finn
  5. 【5月開催】第八回 マツモトファインケミカル技術セミナー 有機金属化合物「オルガチックス」の密着性向上剤としての利用 -プライマーとしての利用-
  6. 周期表の形はこれでいいのか? –上下逆転した周期表が提案される–
  7. フロー合成と電解合成の最先端、 そしてデジタル有機合成への展開
  8. 第165回―「光電変換へ応用可能な金属錯体の開発」Ed Constable教授
  9. 第15回日本化学連合シンポジウム「持続可能な社会構築のための見分ける化学、分ける化学」
  10. Dead Endを回避せよ!「全合成・極限からの一手」④

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年5月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー