[スポンサーリンク]

odos 有機反応データベース

ポーソン・カーン反応 Pauson-Khand Reaction

[スポンサーリンク]

 

概要

化学量論量のコバルトオクタカルボニルおよびアルキン、アルケン存在下、シクロペンテノン誘導体を合成する反応。 形式的にはアルケン+アルキン+COの[2+2+1]三成分カップリングといえる。

分子間反応ではアルケン・アルキンの位置制御の問題が常に付随するため、分子内反応のほうが扱いやすく利点は大きい。

触媒量の金属で進行する系も多数見出されている。

ごく最近では、一酸化炭素を用いずにアルデヒドをCO源として用いるPauson-Khand反応も見いだされている。この場合にはオートクレーブなどの加圧反応装置を必要としないため、より利便性が高い。

 

基本文献

  • Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E. Chem. Commun. 1971, 36. DOI: 10.1039/C2971000036a
  • Khand, I .U.; Knox, G. R.; Pauson, P. L.; Watts, W. E.; Foreman, M. I.. J. Chem. Soc. Perkin Trans. I 1973,
    977.
  • Belanger, D. B.; O’Mahony, D. J. R.; Livinghouse, T. Tetrahedron Lett. 1988, 39, 7637. doi:10.1016/S0040-4039(98)01693-1
  • Hoye, T. R.; Suriano, J. A. J. Am. Chem. Soc. 1993115, 1154. DOI: 10.1021/ja00056a053
  • Krafft, M. E.; Hirosawa, C.; Bonaga, L. V. R. Tetrahedron Lett. 1999, 40, 9177. doi:10.1016/S0040-4039(99)01959-0

<review>

  • Schore, N. E. Comp. Org. Syn. 1991, 5, 1037.
  • Shore, N. E. Org. React. 1991, 40, 1. doi:10.1002/0471264180.or040.01
  • Geis, O.; Schmalz, H.-G. Angew. Chem. Int. Ed. 199837, 911. [abstract]
  • 杉原多公道, 山口雅彦, 西沢麦夫 有機合成化学協会誌 1999, 57, 158. doi:10.5059/yukigoseikyokaishi.57.158
  • Jeong, N.; Sung, B. K.; Kim, J. S.; Park, S. B.; Seo, S. D.; Shin, J. Y.; In, K. Y.; Choi, Y. K. Pure Appl. Chem. 200274, 85. [PDF]
  • Gibson S.E.; Stevenazzi, A. Angew. Chem. Int. Ed. 200342, 1800. DOI: 10.1002/anie.200200547
  • Blanco-Urgoiti, J.; Anorbe, L.; Perez-Serrano, L.; Dominguez, G.; Perez-Castells, J. Chem. Soc. Rev. 200433, 32. DOI: 10.1039/b300976a
  • Bonaga, L. V. R.; Krafft, M. E. Tetrahedron 200460, 9795. doi:10.1016/j.tet.2004.06.072
  • Alcaide, B.; Almendros, P. Eur. J. Org. Chem. 2004, 3377. DOI: 10.1002/ejoc.200400023
  • Shibata, T. Adv. Synth. Catal. 2006, 348, 2328. DOI: 10.1002/adsc.200600328
  • Kitagaki, S.; Inagaki, F.; Mukai, C. Chem. Soc. Rev. 201443, 2956. DOI: 10.1039/C3CS60382B

<others>

反応機構

コバルト-アルキン錯体を用いる当量反応では、一酸化炭素の解離(配位座を開ける)を促すために加熱が必要となる。開いた配位座にアルケンが配位し、次いでアルキンーコバルト結合への挿入→COの挿入→還元的脱離のプロセスを経てシクロペンテノンができる。(参考:J. Am. Chem. Soc. 2001, 123, 1703.)pauson_khand_2

反応例

(+)-Epoxydictymeneの合成[1]: Schreiberらは、アルキン-コバルト錯体をNicholas反応→Pauson-Khand反応と続けて用いることで複雑な縮環骨格を高効率的に合成している。NMOを加えることで反応が加速されるが、これは配位子のCOをCO2に酸化し、解離を促すためと言われている。[2]

pauson_khand_3

 

キラルチタノセン触媒を用いる不斉Pauson-Khand反応[3]

pauson_khand_4

コバルトメチリジンクラスターを用いると触媒的Pauson-Khand反応が効率よく進行する。錯体はジコバルトオクタカルボニルから容易に調製可能であり、酸化に比較的安定。[4]

pauson_khand_6

カルボジイミドを相方とするPauson-Khand反応とアルカロイド合成への応用[5]

pauson_khand_7

(+)-Ingenolの炭素骨格構築[6]

pauson_khand_8

実験手順

アルデヒドをCO源とするPauson-Khand反応[7]

pauson_khand_5

実験のコツ・テクニック

 

参考文献

[1] Jamison, T. F.; Shambayati, S.; Crawe, W. E.; Schreiber, S. L. J. Am. Chem. Soc. 1997, 119, 4353. DOI: 10.1021/ja970022u
[2] Shambayati, S.; Crowe, W. E.; Schreiber, S. L. Tetrahedron Lett. 1990, 31, 5289. doi:10.1016/S0040-4039(00)98052-3
[3] Hicks, F. A.; Buchwald, S. L. J. Am. Chem. Soc. 1996118, 11688. DOI: 10.1021/ja9630452
[4] Sugihara, T.; Yamaguchi, M. J. Am. Chem. Soc. 1998120, 10782. DOI: 10.1021/ja982635s
[5] (a) Mukai, C.; Yoshida, T.; Sorimachi, M.; Odani, A. Org. Lett. 2006, 8, 83. DOI: 10.1021/ol052562z (b) Aburano, D.; Yoshida, T.; Miyakoshi, N.; Mukai, C. J. Org. Chem. 2007, 72, 6878. DOI: 10.1021/jo071137b
[6] (a) Jorgensen, L.; McKerrall, S. J.; Kuttruff, C. A.; Ungeheuer, F.; Felding, J.; Baran, P. S. Science 2013341, 878. doi:10.1126/science.1241606 (b) McKerrall, S. J.; Jorgensen, L.; Kuttruff, C. A.; Ungeheuer, F.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5799. DOI: 10.1021/ja501881p
[7] Morimoto, T.; Fuji, K.; Tsutsumi, K.; Kakiuchi, K. J. Am. Chem. Soc. 2002, 124, 3806. DOI: 10.1021/ja0126881

関連反応

 

関連書籍

 

外部リンク

関連記事

  1. ハートウィグ ヒドロアミノ化反応 Hartwig Hydroam…
  2. クノール ピロール合成 Knorr Pyrrole Synthe…
  3. デレピン アミン合成 Delepine Amine Synthe…
  4. ウギ反応 Ugi Reaction
  5. アサートン・トッド反応 Atherton-Todd Reacti…
  6. ポヴァロフ反応 Povarov Reaction
  7. ヒドロシリル化反応 Hydrosilylation
  8. ミッドランド還元 Midland Reduction

注目情報

ピックアップ記事

  1. 佐伯 昭紀 Akinori Saeki
  2. ジャネット・M・ガルシア Jeannette M. Garcia
  3. 活性酸素・フリーラジカルの科学: 計測技術の新展開と広がる応用
  4. 日本で発展する化学向けAIと量子コンピューターテクノロジー
  5. 第30回「化学研究の成果とワクワク感を子供たちにも伝えたい」 玉尾皓平教授
  6. 今週末は「科学の甲子園」観戦しよーぜ
  7. ドーパミンで音楽にシビれる
  8. 三中心四電子結合とは?
  9. 近年の量子ドットディスプレイ業界の動向
  10. マテリアルズ・インフォマティクス新春座談会 -二刀流で進める素材開発 実験と計算科学-

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP