[スポンサーリンク]

B

森田・ベイリス・ヒルマン反応 Morita-Baylis-Hillman Reaction

[スポンサーリンク]

 

概要

アルデヒド/イミンと電子不足アルケンを用いる、求核触媒による炭素-炭素結合形成反応。アトムエコノミーに優れ、不斉合成へも応用可能。

求核触媒としてはDABCO,?DMAP, DBUなどの環状三級アミンやホスフィンがよく用いられる。

古典的反応条件ではきわめて遅くしか進行しない。ルイス酸の添加は求核触媒をしばしば不活性化する結果になり、また加熱するとアルケンの重合などが併発するため、単純な発想ではこの克服は難しい。現在でも研究のキーポイントとなっている。

近年では不斉有機分子触媒を用いる研究が盛んである。

基本文献

  •  Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815. DOI: 10.1246/bcsj.41.2815
  •  Baylis, A. B.; Hillman, M. E. D. Chem. Abstr. 1972, 77, 34174q.
  •  Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653. doi:10.1016/S0040-4020(01)86168-8

<Review>

 

反応機構

マイケルアルドール型反応類似の機構で進行する。プロトン移動段階が律速に絡むとされ、この過程をスムーズに行える系が活性の面で優れる。
(参考: Tetrahedron 1992, 48, 6371; Tetrahedron 1993, 49, 6931; J. Org. Chem. 2005, 70, 3980; Org. Lett. 2005, 7, 147; Angew. Chem., Int. Ed. 2005, 44, 1706.) baylis_hillman_2.gif

反応例

Salinosporamide A の合成[1]:分子内Baylis-Hillman反応により、ビシナル位不斉四置換炭素中心を立体選択的に構築している。

baylis_hillman_3.gif

有機触媒β-ICDを用いる触媒的不斉Baylis-Hillman反応[2] baylis_hillman_4.gif

実験手順

 

実験のコツ・テクニック

 

参考文献

[1] Rerddy, L. R.; Saravanan, P.; Corey, E. J.J. Am. Chem. Soc. 2004, 126, 6230. DOI: 10.1021/ja048613p
[2] Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am. Chem. Soc. 1999, 121, 10219. DOI: 10.1021/ja992655+

 

関連反応

 

 

関連書籍

[amazonjs asin=”047017577X” locale=”JP” title=”Catalytic Asymmetric Synthesis”][amazonjs asin=”3527305173″ locale=”JP” title=”Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis”][amazonjs asin=”3527315225″ locale=”JP” title=”Enantioselective Organocatalysis: Reactions and Experimental Procedures”][amazonjs asin=”4882319136″ locale=”JP” title=”有機分子触媒の新展開 (CMC Books)”][amazonjs asin=”3527298711″ locale=”JP” title=”Modern Carbonyl Chemistry”]

関連リンク

関連記事

  1. ルチッカ大員環合成 Ruzicka Large Ring Sy…
  2. バーチ還元 Birch Reduction
  3. ドウド・ベックウィズ環拡大反応 Dowd-Beckwith Ri…
  4. 均一系水素化 Homogeneous Hydrogenaton
  5. フリーデル・クラフツアルキル化 Friedel-Crafts A…
  6. ビギネリ反応 Biginelli Reaction
  7. 秋山・寺田触媒 Akiyama-Terada Catalyst
  8. ジアゾカップリング diazocoupling

注目情報

ピックアップ記事

  1. ダイセル化学、筑波研をアステラス製薬に売却
  2. 理論的手法を用いた結晶内における三重項エネルギーの流れの観測
  3. 光学活性ジペプチドホスフィン触媒を用いたイミンとアレン酸エステルの高エナンチオ選択的 [3+2] 環化反応
  4. 年収で内定受諾を決定する際のポイントとは
  5. 銅触媒による第三級アルキルハロゲン化物の立体特異的アルキニル化反応開発
  6. 密閉容器や培養液に使える酸素計を使ってみた!
  7. キノリンをLED光でホップさせてインドールに
  8. エントロピーを表す記号はなぜSなのか
  9. メリークリスマス☆
  10. ビス(トリシクロヘキシルホスフィン)ニッケル(II)ジクロリド : Bis(tricyclohexylphosphine)nickel(II) Dichloride

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー