[スポンサーリンク]

元素

窒素 Nitrogen -アミノ酸、タンパク質、DNAの主要元素

[スポンサーリンク]

 空気の80%を占める窒素は、アミノ酸やDNAなど、生体分子の主要構成元素として知られています。その一方で窒素酸化物は、大気汚染の原因としても知られています。

 

窒素の基本物性データ

分類 非金属
原子番号・原子量 (14.0067)
電子配置 2s22p3
密度 1.2506 kg/m
融点 – 209.86℃
沸点 –195.8℃
硬度
色・形状 無色・気体
存在度 地球 25ppm、宇宙3.17✕106
クラーク数 0.03%(16位)
発見者 ダニエル・ラザフォード(1772年)
主な同位体 14N (99.632%), 15N (0.368%)
用途例 アミノ酸、タンパク質、DNAの主要元素、冷却材(液体窒素)、アンモニア生産の原料、狭心症の薬(NO)
前後の元素 炭素窒素酸素

「生命がない」気体?

密閉容器内でろうそくを燃やすと、酸素が消費され、二酸化炭素が発生します。次は、徐々に消え、残った気体は燃えません。この現象は昔から知られていました。

スコットランドの化学者であったラザフォードは、二酸化炭素を吸収する溶液に通すことで、その残りの気体を単離することに成功しました。その気体中ではネズミなどの生き物がすぐに窒息死することから、「有毒な空気」(noxious air)と呼びました。

その後、1789年にラボアジェ(水素参照)によってこれが元素であることが証明され、フランス語で「生命がない」という意味のazoteと命名されました。現在の窒素の英語名(Nitrogen)は、ギリシャ語のNitron(硝石の意)とgennen(「作る」の意)に由来しています。

 

ダニエル・ラザフォード

Daniel Rutherford

Daniel Rutherford

1749-1819年 スコットランドの医者、化学者。エディンバラ大学植物学教授(エディンバラ大学はスコットランドの首都エディンバラにある)。ラザホージウムの由来である、ラザフォードとは別人である。

 

アミノ酸・たんぱく質の主要元素

窒素は、私達の体を構成するたんぱく質の元であるアミノ酸や、遺伝子情報などを伝達するDNA(デオキシリポ核酸)の構成成分である核酸塩基(ヌクレオチド)などに多く含まれており、人間にとって必須の元素であるといえます。

2016-02-13_21-16-49

 

何でも凍る?液体窒素

「バナナで釘を叩くことができます!」

こんなフレーズ一度は聞いたことがあると思います。これは、窒素を液化した液体窒素でバナナを凍らせることによって可能にしています。液体窒素の温度はおよそ−196℃です。液体ヘリウムよりは沸点が高温ですが、価格は10分の1程度であるため、各種分析機器や高温超伝導体、実験室での低温実験などで冷却材として用いられています。

2016-02-13_21-20-44

 

大気汚染の原因、ノックス(NOx)

ノックス(NOx)は工場や自動車の排気ガスから排出される窒素酸化物の総称です。ものが燃えるときに空気中の酸素と高温で結びつくことにより、一酸化窒素(NO)や二酸化窒素(NO2)などとして発生します。呼吸障害、肺水腫、肺がんの原因物質であり、人体に悪い影響を与えるだけでなく、酸性雨の原因としても知られています。

2016-02-13_21-25-45

 

アンモニアの合成

窒素の水素酸化物であるアンモニア(NH3は、それ自体は有害で、強烈な刺激臭があります。

しかし、工業的には非常に重要な化合物です。高校でも学ぶ、炭酸ナトリウムの原料(アンモニアソーダ法)や、硝酸の原料(オストワルト法)となる他、重要な肥料である尿素や各種窒素酸化物の原料となります。

工業的には、窒素と水素に鉄化合物などの触媒を用いて、500℃、1000気圧付近で直接反応させ精算します(ハーバー・ボッシュ法)。この反応が開発されたのおかげで、大量の食料生産が可能となりました。しかし最近では、ハーバー・ボッシュ法のような高温、高圧を必要としない温和な条件でのアンモニア生産が研究されています。

マメ科の植物の根に共生する根粒バクテリアの中に存在するニトロゲナーゼ(窒素固定酵素)という酵素を用いて、新たな省エネルギー工業プロセスの開発に利用する試みがなされているのです。生命の力は素晴らしいですね。

 

2016-02-13_21-48-05

 

窒素に関するケムステ関連記事

 

関連動画

 

関連書籍

[amazonjs asin=”4425513614″ locale=”JP” title=”越境大気汚染の物理と化学”][amazonjs asin=”4807908766″ locale=”JP” title=”工業有機化学―原料多様化とプロセス・プロダクトの革新〈上〉”]
Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 理化学研究所が新元素発見 名前は「リケニウム」?
  2. 水素 Hydrogen -最も基本的な元素で、燃料電池の原料
  3. フッ素 Fluorine -水をはじく?歯磨き粉や樹脂への応用
  4. いつ、どこで体内に 放射性物質に深まる謎
  5. 元素周期表:文科省の無料配布用、思わぬ人気 10万枚増刷、100…
  6. 元素に恋して: マンガで出会う不思議なelementsの世界
  7. 硫黄 Sulfurーニンニク、タマネギから加硫剤まで
  8. ペッカ・ピューッコ Pekka Pyykkö

注目情報

ピックアップ記事

  1. REACH規則の最新動向と対応方法【終了】
  2. 第61回―「デンドリマーの化学」Donald Tomalia教授
  3. 第四回Vプレミアレクチャー「金属錯体を利用した光化学アップコンバージョン」を開催します!
  4. ルイ・E. ・ブラス Louis E. Brus
  5. 平井 剛 Go Hirai
  6. Christoper Uyeda教授の講演を聴講してみた
  7. 採用が広がるユーグレナのバイオディーゼル燃料、ユーグレナバイオジェット燃料も完成
  8. 2011年日本化学会各賞発表-学会賞-
  9. ヒト胚研究、ついに未知領域へ
  10. 『分子科学者がいどむ12の謎』

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年2月
1234567
891011121314
15161718192021
22232425262728
29  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー