[スポンサーリンク]

chemglossary

光親和性標識 photoaffinity labeling (PAL)

[スポンサーリンク]

 

芳香族アジドや芳香族ジアジリン、ベンゾフェノンなどは、光照射によって反応活性種を生じる構造として知られている。そのため、これらを導入した生理活性物質を生物やその破砕物に添加して光を照射することで、活性物質の標的タンパク質等を標識することができる。この手法を光親和性標識法と呼び、先に上げたような構造は光親和性ユニットや光親和性標識基と呼ばれる。

また、光親和性標識にはラベルしたタンパク質を検出するための検出用官能基も必要である。検出用官能基としては放射性同位元素ビオチンが主流であり、それらを導入した化合物が多く用いられている。その他、近年ではクリックケミストリーを使い、タンパク質の標識化後に検出用官能基を導入する手法も確立されてきている。

光親和性標識法は多くのタンパク質が存在する系中から、標的タンパク質を簡便に標識する方法として注目されている。そして、ケミカルバイオロジーの起こりとともに、この手法を用いて生理活性物質の標的タンパク質を標識化し、同定する試みが盛んに行われている。しかしながら、タンパク質をラベルするという目的のために、光親和性標識基には以下のような性質が求められる。

 1. 蛍光灯など日常扱う光では励起しないこと
2. 励起条件が温和で、生体成分に影響を与えないこと
3. 励起状態がタンパク質のラベルのために十分長いこと
4. 非特異的にタンパク質と結合しないこと
5. 光親和生標識基が活性に影響を与えないこと

これらの条件を完璧に満たす光親和性標識基は未だ開発されてはいない。そのため、多くの光親和性標識基の中から、使用者が自らの目的に応じて光親和性標識基を選択しなければならない。しかし、実際には以下の3つの標識基が主に使用されている。

A. Phenylazide

300nm以下のUVを照射することで活性種であるニトレンを生成する。実際にはフェニルアジドそのものを導入するのではなく、ベンゼン環をもつ物質にアジドのみ導入するケースが圧倒的に多い。
最大の利点としては、小さいために化合物へ与える影響が少ないことがあげられる。しかし欠点が多く、第一に照射するUVが短波長でなければならない。短波長のUVの照射はタンパク質を変性させるため、長時間の照射には向いていないとされる。第二に、アジドがチオールと反応するため、標的タンパク質以外のタンパク質に対して非特異的な結合を形成する場合がある。その他、不可逆的な反応のため、反応効率が低い。

B. Trifluoromethylphenyldiazirine

360nm以下のUVを照射することで活性種であるカルベンを生成する。こちらはベンゼン環を持たない化合物にフェニルジアジリンユニットを導入することも多い。
ジアジリンは比較的長波長のUV照射で励起する。カルベンはニトレンやジラジカルに比べて反応性が高いことから、短時間のUV照射で標識することができる。さらに、水と反応するため、近傍にタンパク質等がいない場合には失活することで非特異的標識を防ぐという性質も持つ。一方、短所としてはアジドに比べると構築する手間がかかることあげられる。

C. Benzophenone

360nm付近の光でビラジカルベンゾフェノンの最大の特徴は、励起が可逆的に起こることである。反応しなかった分子は元の構造に戻るため、反応効率が高いと言われている。
しかし、その大きさから化合物に与える影響が大きいことや、状況によっては構築が難しい点が短所である。また、水と反応しないことから、繰り返しUV照射をするうちに非特異的な標識をしてしまう可能性も高い。

詳細や応用例について更に詳しく知りたい方は以下のReviewやそのReferenceを参考にされたい。

参考文献、関連文献

  1.  “Recent Trends in Photoaffinity Labeling” Florence Kotzyba-Hibert et al. Angew. Chem. Int. Ed. Engl. 1995, 34, 1296-1312
  2.  “Photoaffinity Labeling and Its Application in Structural Biology” E. L. Vodovozova BIOCHEMISTRY(Moscow) 2007, Vol.72, No.1
  3.  “Recent Progress in Diazirine-Based Photoaffinity Labeling” Makoto Hashimoto et al. Eur. J. Org. Chem. 2008, 2513-2523

 

関連書籍

[amazonjs asin=”4274501973″ locale=”JP” title=”入門ケミカルバイオロジー”][amazonjs asin=”4759813799″ locale=”JP” title=”生物活性分子のケミカルバイオロジー: 標的同定と作用機構 (CSJ Current Review)”]

 

関連リンク

  • 定金研究室

 

 

Avatar photo

らくとん

投稿者の記事一覧

とある化学メーカーで有機合成関係の研究をしている人。一日でも早くデキる企業ケミストになることを夢見ているが、なかなか芽が出ない残念ケミスト。化学も好きだけど生物も大好きな農芸化学出身。

関連記事

  1. 点群の帰属 100 本ノック!!
  2. 国連番号(UN番号)
  3. フッ素のゴーシュ効果 Fluorine gauche Effec…
  4. 光線力学療法 Photo Dynamic Therapy (PD…
  5. 合成後期多様化法 Late-Stage Diversificat…
  6. デンドリマー / dendrimer
  7. 卓上NMR
  8. ステープルペプチド Stapled Peptide

注目情報

ピックアップ記事

  1. PdとTiがVECsの反応性をひっくり返す?!
  2. 森田・ベイリス・ヒルマン反応 Morita-Baylis-Hillman Reaction
  3. 春の褒章2010-林民生教授紫綬褒章
  4. ステファン・カスケル Stefan Kaskel
  5. タンパク質機能をチロシン選択的な修飾で可逆的に制御する
  6. 【技術系スタートアップ合同フォーラムのお知らせ】 ディープテックのリアル-業界ならでは魅力と社会課題解決への想い
  7. 生物発光のスイッチ制御でイメージング
  8. 2015年化学生物総合管理学会春季討論集会
  9. 「進化分子工学によってウイルス起源を再現する」ETH Zurichより
  10. 『ほるもん-植物ホルモン擬人化まとめ-』管理人にインタビュー!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年12月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

早稲田大学各務記念材料技術研究所「材研オープンセミナー」

早稲田大学各務記念材料技術研究所(以下材研)では、12月13日(金)に材研オープンセミナーを実施しま…

カーボンナノベルトを結晶溶媒で一直線に整列! – 超分子2層カーボンナノチューブの新しいボトムアップ合成へ –

第633回のスポットライトリサーチは、名古屋大学理学研究科有機化学グループで行われた成果で、井本 大…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP