[スポンサーリンク]

化学者のつぶやき

教科書を書き換えるか!?ヘリウムの化合物

[スポンサーリンク]

18族元素、すなわち貴ガス元素の化合物があるってご存じでしたか?

そりゃあケムステの読者の皆様でしたら知ってましたよね。筆者が高校生くらいの時は、希ガス元素は化合物を作らないと教え込まれた気がします。でも最近の高校の化学の教科書では希ガス元素の化合物もあるということが明記されているんですよね。ただ、紹介されるのはキセノンの化合物くらいでして、ヘリウムネオンの化合物はみつかっていないと明記されている教科書もあります。

しかし、どうやらヘリウムの「化合物」と言える物質が新たに見いだされました。よって教科書を書き換える必要が出てきた気がします(貴ガスだけに)。というわけで、今回のポストでは貴ガスの化合物について少し紹介していきましょう。

ここに実教出版の高校「化学」の教科書がありましたので希ガスの項を見てみます。

希ガス原子の電子配置は、荷電子0とみなされる。他の原子に比べて極めて安定しており、他の原子と結合しにくく、化合物をつくりにくい。

とあり、欄外には

キセノンの化合物XeF2, XeO4など、またKr, Arにも化合物が知られているが、ヘリウム、ネオンには化合物は見つかっていない。

という記述があります。

そうなんですね。キセノンにはフッ化物、酸化物の他にもXeF[PtF5]などの化合物(これが最初に発見された貴ガスの化合物です[1])が、クリプトンにもKrF2やKr(OTeF5)2などが知られています。ラドンにもフッ化物はあるようですが、放射性のため解析が困難だそうです。

アルゴンの化合物はというと少し微妙になってきましてHArFが2000年に初めて報告されました。[2]他には水やヒドロキノンとの包接化合物(メタンハイドレートなどと同じ)が知られています。

クリプトンやキセノンは空のd軌道がありますので、その辺りが化学結合に関与するんでしょうか。(2017.2.11追記あり)アルゴンになるとそういった電子のやりとりが困難になるので、化合物を作るのが困難になってきます。極めつけがネオンとヘリウムで、ご存じの通り、最外殻が全て埋まっています。ヘリウムのイオン化エネルギーは24.59 eVと全元素の中で最大で、最もイオンになりにくいことになります。

では、本当にヘリウム、ネオンの化合物は無いのでしょうか?実は既にヘリウムやネオンでも「化合物」と呼ばれるものはありました。例えば、He@C60やNe@C60のように、フラーレンの中に原子を閉じ込めた物質は有名かと思います。

フラーレンに捕まった希ガス(画像はWikipediaより)

また、LiHe, He2のような分子間に働く弱い力であるvan der Waals力によって微妙に結びついた、van der Waars分子と呼ばれるものです。また、He2*のような高エネルギー状態になっている分子(Rydberg分子)も確認されています。特に、van der Waars分子については、ヘリウム、ネオン問わず多くの希ガス化合物が観測されています。

しかし、このvan der Waars力というのはかなり弱い結合ですので、イメージとしてはなんとなく分子が寄り添っているような感じで、「化学結合」しているとはお世辞にも言えないものですよね。

そんな中今回、中国、ロシア、米国など様々な研究者たちがNature Chemistry誌に報告した物質は、真の意味でヘリウムの化合物と呼んでいい気がする(しつこい)、ものです。

“A stable compound of helium and sodium at high pressure”

Dong, X.; Oganov, A. R.; Goncharov, A. F.; Stavrou, E.; Lobanov, S.; Saleh, G.; Qian, G.-R.; Zhu, Q.; Gatti, C.; Deringer, V. L.; Dronskowski, R.; Zhou, X.-F.; Prakapenka, V. B.; Konôpková, Z.; Popov, I. A.; Boldyrev, A. I.; Wang, H.-T.

Nature Chem. 2017 AOP DOI: 10.1038/nchem.2716

この論文は、物理学の分野では一般的によく知られている論文のプレプリントサーバーarXivに2013年に投稿された論文(arXiv:1309.3827)が基になっています。

彼らの手法は論文タイトルそのままでして、ヘリウムとナトリウムの単体を入れた容器に1600 bar (約1600気圧)のヘリウムで満たし、ダイヤモンドアンビルセル(diamond anvil cell)と呼ばれる高圧実験に用いられる機器を用いて120 GPa以上の高圧状態にしてレーザーで加熱するというものです。

その結果、

2Na + He → Na2He

という単純明快な化学反応により、Na2Heを合成し、その存在をX線回折によって確認するにいたりました。

このヘリウムとナトリウムの組み合わせですが、USPEX (Universal Structure Predictor: Evolutionary Xtallography)というアルゴリズムを用いて予測したところ、理論的に存在できることが明らかとなっており、論文に記載されている今回の実験値ともよく符合しています。また、理論的にはNa2HeOも存在しうることを見いだしています。

問題はこの物質が化合物と呼べる代物かどうかです。単にナトリウムとヘリウムがごちゃ混ぜになっているだけのものではないデータを示しており、その構造はNa8の立方体の中に4つのHeが入り込んだ形になっていました。

ピンクがNa、グレーがHe原子(図は論文より抜粋)

では、電子はどうなってるの?ということですが、ヘリウムの最外殻電子は2個、ナトリウムは1個ですから、どうやっても結合できなそうです。その答えは電子2個がさらに空間を占めていて、平均すると、Naに+0.6の電荷が、ヘリウムに約-0.15の電荷、電子2個が約-1.1の電荷を担っているという結果でした。

300 GPaにおけるNa, He, 2eの電子局在関数(Electron Localization Function)のプロット(図は論文より抜粋)

電荷に関してはかなり分かりにくいかと思いますが、上図で見ると多少わかりやすいかと思います。NaとHe、そして2eがそれぞれの空間に押し込められているような状態で存在しています。正味8中心2電子結合になります。

無理矢理狭いところに押し込んで潰しただけじゃんと言えばそれまでなのでしょうが、これならばvan der Waars力でなんとなくではなく、HeとNaが立派な化学結合をしているとしてよいのではないでしょうか。という訳で、今回の研究が幅広く認められれば、高校の教科書を書き換える必要があるのではないかという、文字通り小さい反応ですが大きな発見である気がするのです(本当にしつこい)。

ついでに高校の教科書も希ガス(rare gas)を貴ガス(noble gas)にした方がいい気がします。[3]

2017.2.11追記

さかのうえ様からのご指摘を受けまして、調べ直してみました。筆者の浅知恵では例えばXeF2でしたらsp3d混成軌道で丁度説明できるなと思っていたのですが(Paulingもそう考えており、一時そのように考えられていた時期もあるようです)、これは現在では主流の考えではないようです。例えば、

Braïda, B; Hiberty, P. C. Nature Chem. 5, 417 (2013).   doi:10.1038/nchem.1619

によると、XeF2ではsp3d軌道の貢献は11%ほどであり、電荷移動型結合(charge-shift bonding)が主たる結合の役割をしていて、ご指摘の通りRundle–Pimentelモデルすなわち三中心四電子結合で結合していると考えるのが妥当との計算がなされています。

調査を怠っていたことを深くお詫び申し上げます。

関連文献

[1] Bartlett, N. Proc. Chem. Soc. 197236 (1962). DOI: 10.1039/PS9620000197

[2] Khriachtchev, L.; Pettersson, M.; Runeberg, N.; Lundell, J.; Räsänen, M. Nature 406, 874876 (2000). DOI: 10.1038/35022551

[3] 日本化学会 高等学校化学で用いる用語に関する提案(1) 

関連書籍

[amazonjs asin=”B01HCOSBPW” locale=”JP” title=”やさしくわかる 周期表と元素”] [amazonjs asin=”4416517092″ locale=”JP” title=”元素周期表パーフェクトガイド: ニホニウム収録完全版ポスター付き 元素でできたこの世界が手に取るようにわかる”] [amazonjs asin=”4847061020″ locale=”JP” title=”氷の燃える国ニッポン (ワニブックスPLUS新書)”]
Avatar photo

ペリプラノン

投稿者の記事一覧

有機合成化学が専門。主に天然物化学、ケミカルバイオロジーについて書いていきたいと思います。

関連記事

  1. 第99回日本化学会年会 付設展示会ケムステキャンペーン Part…
  2. 光レドックス触媒と有機分子触媒の協同作用
  3. OIST Science Challenge 2022 (オンラ…
  4. 条件最適化向けマテリアルズ・インフォマティクスSaaS : mi…
  5. MIを組織内で90日以内に浸透させる3ステップ
  6. ケクレン、伸長(新調)してくれん?
  7. 新規性喪失の例外規定とは?
  8. 天然物界70年の謎に終止符

注目情報

ピックアップ記事

  1. 活性が大幅に向上したアンモニア合成触媒について
  2. 三井物と保土谷 多層カーボンナノチューブを量産
  3. イオンのビリヤードで新しい物質を開発する
  4. キレトロピー反応 Cheletropic Reaction
  5. Christoph A. Schalley
  6. 第八回 自己集合ペプチドシステム開発 -Shuguang Zhang 教授
  7. ケイ素 Silicon 電子機器発達の立役者。半導体や光ファイバーに利用
  8. マイクロ波合成装置の最先端!
  9. -ハロゲン化アルキル合成に光あれ-光酸化還元/コバルト協働触媒系によるハロゲン化アルキルの合成法
  10. AIによる創薬に新たな可能性 その研究と最新技術に迫る ~米・Insitro社 / 英・ケンブリッジ大学の研究から~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年2月
 12345
6789101112
13141516171819
20212223242526
2728  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP