[スポンサーリンク]

一般的な話題

有機アジド(2):爆発性

[スポンサーリンク]

さて、前回からはじまった特別講義「有機アジド」。なかなかマニアックですが、有機化学系の学生ならば知っておいて欲しい内容です。それでは今回は、もう少し興味を引くような(?)、有機アジドの恐ろしい性質「爆発性」をお話ししましょう。

なぜ爆発する?そして覚えておくこと

アジド化合物(アジ化物)は有機基がついているいないにも関わらず、加熱や衝撃によって爆発する可能性があります。エネルギーを与えられたアジド化合物が窒素を爆発的に発生し、分解するからです。とはいっても一般的になかなか手に入れることができないので、そこはご安心を。合成化学者の方々はもし有機アジドを合成する・利用することがあれば、[覚えてほしいこと・守ってほしいこと]があり、それは以下の通り。

  • アジド化合物の(炭素+酸素)を窒素で割った数(C/N比)を3未満はつくらない

2016-09-22_17-58-55

  • つくるときは炭素6個以上 Rule of six
  • 大抵の有機アジド化合物は180以上で分解する
  • 金属製品は近づけない
  • 基本的に遮光しておく

簡単な例を示します(図1)。例えば、炭素9個のノニルアジドはC/N比が3であり、加熱や過度な光照射下に置かない限り安定です。一方、1-アジドヘキサンは、炭素が6個に窒素が3個。炭素が6個以上というRule of sixにはギリギリはいっていますが、C/N比は2となりアウト。とはいえど、合成できますが、濃縮している段階で爆発する可能性が大いにあります。最後に炭素3つの1-アジドプロパン(C/N比1、炭素3)は、はっきりいってその利用や合成は自殺行為です。

2016-09-22_18-01-07

図1. アルキルアジド。右にいくほど爆発性が高い

アジ化物と有機アジドの爆発性試験

ちなみに爆発性ってどうやって決めてるんでしょう。指標(試験)があるはずです。調べてみると、代表的な爆発性試験は「ハンマー落下試験」(図2「すりつぶし試験」(図3)。名前からわかると思いますが、前者は試料を挟んだスチールシリンダーをハンマーを落とし(叩き)、爆発したらハンマーの重さと落とした高さを記録します。一方のすりつぶし試験はサンプルを置き、一定の力ですりつぶす!両者ともかなりアナログなにおいがします。

では、その結果を少しだけ見てみましょう(図2)。例えば爆発物として認識されているTNT(トリニトロトルエン)は5kgのハンマーを0.3mから落とすと爆発。妥当ですね。ダイナマイトの原料ニトログリセリン0.1kgのハンマーを20cmの高さから落とすだけで爆発するんですね。怖い怖い。ではアジド化合物を見てみると、金属アジ化物であるアジ化鉛(Lead azide)はトリニトロトルエンよりも爆発しやすく、表の下のアジド基たっぷりの化合物はニトログリセリンに匹敵するほどの爆発性を持つことがわかります。

2016-09-22_18-15-12

図2 ハンマー落下試験

続いては、すりつぶし試験。TNTやニトログリセリンは全然反応しない。それに比べて、アジ化物はちゃんと(!?)爆発します。アジ化鉛に至っては、圧倒的なすりつぶしに対する弱さ。今回は金属アジ化物はあまり出てきませんが、遷移金属アジドはほぼ触ってはダメということがわかりますよね。

2016-09-22_18-15-53

図3. すりつぶし試験

こんな有機アジドつくるなよ!

では、本論に戻ります。こいつら、なんとなくやばそうだなというのはわかっていただいたでしょうか?ちゃんとルールに従って使っていればこんないい化合物はないのですが、ルールを守れない人もいるのです。その危険性に潜む「未開拓」の魅力か、はたまたどの程度危険なのか調査したいという科学者の使命か知りませんが、やばいものつくっちゃう人がいるのです。例えば以下の化合物(図4)。これ全部合成された化合物なんですね。普通の感覚を持つ化学者ならば恐ろしくて近寄ることができません

2016-09-22_18-27-56

図4. やばい有機アジドの例

はたまた、わかっちゃいるけど、できちゃったという例もあります(図3)。化合物1のヒドロキシ基をアジドに変えた例です。こんなの工業的スケールでも可能な安全な方法です。と言いたいところですが、爆発しました。さて何故でしょう?考えてみてください。

2016-09-22_18-28-40

図5. 爆発例

さて、答えは溶媒です。DCMと書いていますが、これはジクロロメタン。そう、このジクロロメタン溶媒と次の反応のアジ化ナトリウムが反応したんですね。1つ目の反応終了後、溶媒をしっかり減圧留去したつもりが、少しだけ残っていました。そのおかげでアジ化ナトリウムと反応し、ジアジドメタン(図4右から2つ目の化合物)が生成したのです。これは実際起こった事故で、1を12.6kgスケールで反応をおこなったところ、20Lのエバポとその周辺が木っ端微塵になったといいます

有機アジドでの最近の事故例

詳しくはあまり述べ魔炎が、その他の近年の事故例は以下のとおり。

事故例1: 2014年6月17日 ミネソタ大学

学生が200gのアジ化ナトリウムからトリメチルシリルアジドを合成(Org. Synth. 1970, 50, 107.)していて爆発。ドラフトはボロボロ、被害者の大学院生は腕・脇・鼓膜に怪我。またガラスを除去するために手術となったが命に別条はなかった。文献は学部生でも再現可能な実験を集めたジャーナルで、しっかり注意事項も下記の通り書いてありますが、ちゃんと守らないとこんなことになります。

Caution! This reaction should be conducted behind a safety shield in a fume hood. In the presence of water and certain other proton sources, highly toxic hydrazoic acid may form which also poses an explosion hazard.

2016-09-22_18-30-06

事故例2: 2014年11月17日 京都工芸線維大学

アジドエタノールを合成するために、フラスコで試薬を加熱していたところ、爆発。学生五人が顔などに怪我を負ったが命に別条はなかった。

2016-09-22_18-31-53

これも、作っちゃいけない範囲にはいっている化合物ですね。実験にはリスクがつきものですが、リスクに真正面から立ち向かう必要はないのです。

かんべんしてほしい

と、もう有機アジドを使いたくない!と思っちゃう人もいるかもしれませんが、何度も言いますがちゃんとルールに従って使っていれば大丈夫です。そんなルールなんて知ったことか!リスクなんてクソ食らえ!という”エネルギッシュな”化学者がドイツにいるんです。それが、ミュンヘン大学(LMU)のKlapötke教授。600報以上の論文を執筆している有名無機化学者です。でも写真を見たらわかりますが、化学者の格好じゃないですよね。私ならこれをみたとたん絶対に研究室に所属したくないですが、結構メンバー多いんです。ちなみに、この大学ドイツで一番の大学ですよ。

2016-09-22_18-32-52

彼が出版している書籍がこちら。ちょっと勘弁してほしいなあと思います。

[amazonjs asin=”3110439328″ locale=”JP” title=”Chemistry of High-Energy Materials (De Gruyter Textbook)”][amazonjs asin=”3110227835″ locale=”JP” title=”Chemistry of High-Energy Materials (de Gruyter Textbook)”][amazonjs asin=”B018E9DP6O” locale=”JP” title=”High Energy Materials: Propellants, Explosives and Pyrotechnics”]

そして彼が作り出した代表作のアジド化合物が以下のとおり。下記の化合物の構造は単結晶X線構造解析でも決定できています。どれだけ爆発させたんだろう?ただ、こんな化合物でもアジドの性質として述べた、本当は直線じゃなく曲がってること、またIRスペクトルも値も正しいですね。はい。

2016-09-22_18-34-20

1,1’Azobis(tetrazole)に火を近づけた動画もあがっていました。少量すぎてちょっとわからないですが、大きな音がでています。

というわけで、今回はアジド化合物の爆発性について述べてみました。次回は「アジド化合物ってどうやってつくるの?」すなわち合成方法を説明したいと思います。

参考文献

  1. Conrow, R. E.; Dean, W. D. Org. Proc. Res. Dev. 2008, 12, 1285. DOI: 10.1021/op8000977
  2. Org. Synth. 197050, 107. DOI: 10.15227/orgsyn.050.0107
  3. Klapötke, T. M.; Piercey, D. G. Inorg Chem 2011, 50, 2732. DOI: 10.1021/ic200071q
  4. Klapötke, T. M.; Martin, F. A.; Stierstorfer, J. Angew. Chem. Int. Ed. 2011, 50, 4227-4229. DOI: 10.1002/anie.201100300

関連リンク

上級有機化学シリーズー有機アジド

関連書籍

[amazonjs asin=”B01DRX6D7A” locale=”JP” title=”Azides and Nitrenes: Reactivity and Utility”][amazonjs asin=”0470519983″ locale=”JP” title=”Organic Azides: Syntheses and Applications”]
Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. サーモサイエンティフィック「Exactive Plus」: 誰で…
  2. ルイスペア形成を利用した電気化学発光の増強
  3. フラッシュ自動精製装置に新たな対抗馬!?: Reveleris(…
  4. 有機合成化学協会誌2019年8月号:パラジウム-フェナントロリン…
  5. オキソニウムイオンからの最長の炭素酸素間結合
  6. 有機合成化学協会誌2019年12月号:サルコフィトノライド・アミ…
  7. 韮山反射炉に行ってみた
  8. 在宅となった化学者がすべきこと

注目情報

ピックアップ記事

  1. 檜山クロスカップリング Hiyama Cross Coupling
  2. 高分子鎖を簡単に垂直に立てる -表面偏析と自己組織化による高分子ブラシ調製法-
  3. バイオマス燃料・化学品の合成と触媒の技術動向【終了】
  4. Dead Endを回避せよ!「全合成・極限からの一手」⑤(解答編)
  5. Устойчивое развитие аграрного сектора экономики россии на основе механизмов государственно-частного партнерства: экономические проблемы и перспективы развития Журнал “АПК: Экономика, управление” ISSN 0235-2443
  6. 常温常圧アンモニア合成~20年かけて性能が約10000倍に!!!
  7. カプサイシンβ-D-グルコピラノシド : Capsaicin beta-D-Glucopyranoside
  8. ミヤコシンA (miyakosyne A)
  9. バリー・ハリウェル Barry Halliwell
  10. 香料:香りの化学3

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP