[スポンサーリンク]

化学者のつぶやき

ESIPTを2回起こすESDPT分子

[スポンサーリンク]

 

蛍光分子は有機エレクトロルミネッセンス(EL)分野やバイオイメージングなどで幅広く用いられる有機化合物群です。

一般的に、分子のπ共役系を拡張すると蛍光色は長波長になるため、π共役系の拡張度をチューニングすることで多様な色調の蛍光分子が開発されてきました。しかし、赤色から近赤外のような長波長領域に蛍光特性をもつ分子を設計するには、π共役系を拡張するだけでは難しく、「いかにしてストークスシフトを大きくするか」という点が鍵になります。

ストークスシフトとは吸収極大と蛍光極大のエネルギー差のことであり、これを大きくするためのアプローチとして、これまでに

  1. 励起状態での分子内電荷移動の利用[1]
  2. 励起状態でのダイナミックな構造変化の利用[2]
  3. 励起状態での分子内プロトン移動(ESIPT:excited-state intramolecular proton transfer)の利用[3]

が提案されています(図 1)。

図1. ストークスシフトを大きくする分子設計

図1. ストークスシフトを大きくする分子設計

 

いずれの分子設計も励起状態での分子構造の変化を利用してストークスシフトを大きくしている例です。今回は3の励起状態での分子内プロトン移動(ESIPT)を利用したアプローチの新しい取り組みについてお話しましょう。

 

ESIPTと代表的分子

ESIPTは、励起状態において分子内でプロトンが基底状態とは異なる原子へ移動する現象です。

代表的なESIPT分子であるHBO(hydroxyphenyl benzoxazole)を図 2に示します。HBOはフェノール性水酸基がベンゾオキサゾール環の窒素原子と分子内水素結合を形成しています。この分子が励起されS1に移動すると直ちに、基底状態では水酸基側に局在していたプロトンがベンゾオキサゾール環の窒素原子上へ移動します。ESIPT分子は、このプロトン移動が輻射失活のはやさ(ナノ秒)よりも遥かにはやいピコ秒オーダーで進行するため、N*からの蛍光はほとんど観測されず、TA*からの蛍光が支配的となります。

ESIPT分子を特徴付ける大きなストークスシフトはこのTA*からの蛍光に由来し、HBOの場合では吸収極大波長を335 nm(紫外領域)にもちながらも蛍光極大波長は508 nmで可視光領域の緑色を示します。

 

図2. ESIPTによるストークスシフト増大

図2. ESIPTによるストークスシフト増大

 

最近国立台湾大学のChouらは、励起状態の分子内における2回のプロトン移動(ESDPT:excited-state double proton transfer)を用いて、より大きなストークスシフトを実現しました。

Optically Triggered Stepwise Double-Proton Transfer in an Intramolecular Proton Relay: A Case Study of 1,8-Dihydroxy-2-naphthaldehyde

Peng, C.-Y.; Shen, J.-Y.; Chen, Y.-T.; Wu, P.-J.; Hung, W.-Y.; Hu, W.-P.; Chou, P.-T.;J. Am. Chem. Soc. 2015, 137, 14349. DOI: 10.1021/jacs.5b08562

 

以下、この論文を中心にしてESDPT分子を紹介したいと思います。

 

ESDPT分子とESDPTに由来する蛍光

  • ESDPT分子の提案

これまでの研究で1-hydroxy-2-naphthaldehyde (HN12)がESIPT蛍光を示すことが知られていました[4]。最近、Chouらはこの構造から分子内の水素結合部位をさらに一箇所増やした1,8-dihydroxy-2-naphthaldehyde (DHNA)に注目しました(図3)。ESIPTによりTA*が生成したのち、励起状態でもう1度プロトン移動が起こることでTB*が生成し、ESDPTが達成されると予想しました。

2016-01-11_11-31-21

図3. ESDPT分子の設計

 

  • 物性評価

彼らはDHNAを合成し、その吸収・蛍光特性を評価しました。DHNAの吸収および蛍光スペクトルを図 4に示します。

DHNAは400 nm付近にπ–π*遷移に対応する極大吸収をもち(図 4 黒破線)、この波長で励起されたDHNA は500 nmから700 nmにわたる長波長の幅広い蛍光を発します(図 4 黒実線)。この幅広い蛍光は520 nmと640 nmに蛍光極大をもつ2つの蛍光成分からなり、このことはDHNA が励起状態において基底状態とは異なる2つの構造をとっていること示唆しています。

 

図4. DHNAの吸収および蛍光スペクトル

図4. DHNAの吸収および蛍光スペクトル

 

また、DHNAの蛍光特性について詳細に調べるため、520 nmおよび640 nmにおける蛍光寿命測定を行っています(図 5a)。

蛍光寿命測定の結果から、Figure 5bに示した機構でESDPTが起こっていることが実験的に示されました。まず、DHNAは励起されると150 fs以下の非常にはやいタイムスケールで分子内プロトン移動を起こし、TA*を生成します。生成したTA*はピコ秒オーダーでもう1回プロトン移動を起こすことでTB*を生成します。このように励起状態でリレー形式のプロトン移動を経由することでESDPTが達成されることが明らかとなっています。また、TA*からTB*へのプロトン移動が平衡であるため2つの励起状態に由来する520 nm、640 nmの蛍光がともに観測されることがわかりました。

 

2016-01-11_11-34-08

図5. a) 蛍光寿命測定、b) ESDPT機構

 

おわりに

今回ChouらはESIPTを2回起こすESDPT分子としてDHNAを提示し、リレー形式の分子内プロトン移動の観測とこれに伴うストークスシフトの増加を達成しました。励起状態で多段階の分子内プロトン移動を経由することで大きなストークスシフトをもつ分子を実現した本研究は今後の蛍光分子の設計指針に大きく影響を与えるのではないかと思います。

 

参考文献

  1. Grabowski, Z. R. Pure Appl. Chem. 1993, 65, 1751. DOI: 10.1351/pac199365081751
  2. Yuan, C.; Saito, S.; Camacho, C.; Kowalczyk, T.; Irle, S.; Yamaguchi, S. Chem. Eur. J. 2014, 20, 2193. DOI: 10.1002/chem.201303955
  3. Woolfe, G. J.; Melzig, M.; Schneider, S.; Dorr, F. C. Chem. Phys. 1983, 77, 213. DOI: 10.1016/0301-0104(83)85078-2
  4. Tobita, S.; Yamamoto, M.; Kurahayashi, N.; Tsukagoshi, R.; Nakamura, Y.; Shizuka, H. J. Phys. Chem. A. 1998, 102, 5206. DOI: 10.1021/jp981368+
  5. 井上晴夫・高木克彦・佐々木政子・朴鐘震 『光化学Ⅰ』(基礎化学コース)丸善出版(1999)[amazonjs asin=”462104656X” locale=”JP” title=”光化学〈1〉 (基礎化学コース)”]

 

関連書籍

[amazonjs asin=”4759813705″ locale=”JP” title=”ここまで進んだバイオセンシング・イメージング (CSJカレントレビュー)”][amazonjs asin=”4860644387″ locale=”JP” title=”新素材を生み出す「機能性化学」がわかる (BERET SCIENCE)”]
Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 「遠隔位のC-H結合を触媒的に酸化する」―イリノイ大学アーバナ・…
  2. 荷電π電子系の近接積層に起因した電子・光物性の制御
  3. ある動脈硬化の現象とマイクロ・ナノプラスチックのはなし
  4. 生体分子と疾患のビッグデータから治療標的分子を高精度で予測するA…
  5. ラジカルパスでアリールをホウ素から炭素へパス!
  6. 高校生・学部生必見?!大学学術ランキング!!
  7. 第3のフラッシュ自動精製装置がアップグレード:分取クロマトグラフ…
  8. 隠れた資質をも掘り起こす、 40代女性研究員の転身をどう成功させ…

注目情報

ピックアップ記事

  1. マルコフニコフ則 Markovnikov’s Rule
  2. 合同資源産業:ヨウ素化合物を作る新工場完成--長生村の千葉事業所 /千葉
  3. 神経変性疾患関連凝集タンパク質分解誘導剤の開発
  4. C–H活性化反応ーChemical Times特集より
  5. クリストファー・ウォルシュ Christopher Walsh
  6. Gaussian Input File データベース
  7. 鉄の新たな可能性!?鉄を用いたWacker型酸化
  8. トリフルオロメタンスルホン酸2-(トリメチルシリル)フェニル : 2-(Trimethylsilyl)phenyl Trifluoromethanesulfonate
  9. 製薬系企業研究者との懇談会(オンライン)
  10. ノーベル化学賞受賞者が講演 3月1日、徳島文理大学

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

四置換アルケンのエナンチオ選択的ヒドロホウ素化反応

四置換アルケンの位置選択的かつ立体選択的な触媒的ヒドロホウ素化が報告された。電子豊富なロジウム錯体と…

【12月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:有機金属化合物 オルガチックスのエステル化、エステル交換触媒としての利用

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

河村奈緒子 Naoko Komura

河村 奈緒子(こうむら なおこ, 19xx年xx月xx日-)は、日本の有機化学者である。専門は糖鎖合…

分極したBe–Be結合で広がるベリリウムの化学

Be–Be結合をもつ安定な錯体であるジベリロセンの配位子交換により、分極したBe–Be結合形成を初め…

小松 徹 Tohru Komatsu

小松 徹(こまつ とおる、19xx年xx月xx日-)は、日本の化学者である。東京大学大学院薬学系研究…

化学CMアップデート

いろいろ忙しくてケムステからほぼ一年離れておりましたが、少しだけ復活しました。その復活第一弾は化学企…

固有のキラリティーを生むカリックス[4]アレーン合成法の開発

不斉有機触媒を利用した分子間反応により、カリックスアレーンを構築することが可能である。固有キラリ…

服部 倫弘 Tomohiro Hattori

服部 倫弘 (Tomohiro Hattori) は、日本の有機化学者。中部大学…

ぱたぱた組み替わるブルバレン誘導体を高度に置換する

容易に合成可能なビシクロノナン骨格を利用した、簡潔でエナンチオ選択的に多様な官能基をもつバルバラロン…

今年は Carl Bosch 生誕 150周年です

Tshozoです。タイトルの件、本国で特に大きなイベントはないようなのですが、筆者が書かずに誰が…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP