[スポンサーリンク]

化学者のつぶやき

高分解能顕微鏡の進展:化学結合・電子軌道の観測から、元素種の特定まで

[スポンサーリンク]

atomic_microscopy_0.jpg

(画像は論文[2]より)

 「分子のカタチ」は普通の顕微鏡では到底見えないほど小さいものです。しかし2009年にIBMの研究者が化学結合に至るまで鮮明に観測[1]して以来、「分子を目で見る」ことが夢物語ではなくなりました。(参考:「顕微鏡で有機分子の形が見えた!」「顕微鏡で有機化合物のカタチを決める!」)。

その研究指揮者であるLeo Gross氏が執筆したPerspective記事[2]が2011年に公開され、サブアトミックスケールにおける顕微鏡測定の進歩が包括的に紹介されています。これによれば、最近ではフロンティア軌道の可視化や、元素種の特定までが可能になっているようです。実際にペンタセンのフロンティア軌道を顕微鏡で観測したものが、冒頭の画像a,bです。計算結果c,dと見事に一致しています。

現在サブアトミックスケールの分解能を実現できている顕微鏡は、非接触型原子間力顕微鏡(NC-AFM)と、走査型トンネル顕微鏡(STM)の二種類。

どちらも走査型プローブ顕微鏡と呼ばれるタイプに属し、「試料表面を探針でなぞって得られる信号を、画像に変換する」というのが大まかな原理になっています。一般的には使われる探針が細ければ細いほど、分解能が上がるとされています。分解能をサブアトミックスケールにまで向上させた鍵は、どちらも単分子探針を用いたことにあります。すなわち、AFMでは一酸化炭素分子(CO)、STMでは水素分子(H2)[3]を先端につけた探針を用いることで、分子の化学結合に至るまで観測が可能になったのです。

測定信号の違いに由来して、それぞれやや異なる画像が得られてきます。違いを簡単にまとめておきます。

STM

・試料に電気を流す必要がある=導電体にしか使えない
・探針-試料間の誘起力を記述する理論がなく、シミュレーションが難しい
・分子間相互作用も解析可能
・電子軌道(HOMO/LUMO)が観測可能

NC-AFM

・試料に電気を流す必要がない=絶縁体にも使える
・DFT計算でシミュレーションできる
・原子間力を測るため、コントラストの鈍いぼけた画像になる
・C-H結合が観測可能

以下のSTM画像とAFM画像(冒頭図e)を比較してみると、違いがはっきりすると思います。

atomic_microscopy_1.jpg

H2探針STMによる顕微鏡像(論文[2]より)

 特にSTMでは、分子の電気的特性を見ることができるため、電子軌道(=電子局在の様子)を観測することができます。印加電圧の正負を逆転させれば、HOMO/LUMOを区別して見ることもできます。冒頭図a,bの撮影においてはSTMが用いられていますが、これぐらいならばそれほど高い分解能を必要としないらしく、単分子短針を使わずとも済むそうです。

また特定距離で元素種ごとに原子間力の絶対値が異なることを利用し、AFMで元素種を区別することまでもが可能になっています[4]。例えば下図はある半導体表面をNC-AFMで観測したものですが、それぞれ赤=ケイ素、青=スズ、緑=鉛と特定できています。合金の元素分布状態や、不純物の混入度合いなどが原子レベルでわかるということです。しかし現状では重原子を含まず、非平面構造をもつ有機分子に適用するのはまだ難しいようです。

atomic_microscopy_2.jpg

(論文[2]より)

古くはレーウェンフックの顕微鏡から、最近ではカミオカンデに至るまで―「見えないものを見えるようにする」分析技術は、世界を見る目を変えてしまうほどのインパクトがあります。つまり技術の進歩こそは、我々に新たな世界観をもたらしてくれる合理的アプローチの一つなのです。

  • 関連論文
[1] (a) Gross, L. et al. Science 2009, 325, 5944. DOI: 10.1126/science.1176210 (b) Gross, L. et al. Nature Chem. 2010, 2, 821. DOI: 10.1038/NCHEM.765
[2] Gross, L. Nature Chem. 2011, 3, 273. DOI: 10.1038/NCHEM.1008
[3] (a) Tiemirov, R. et al. New. J. Phys. 2008, 10, 053012. (b) Weiss, C. et al. Phys. Rev. Lett. 2010, 105, 086103 (c) Weiss, C. et al. J. Am. Chem. Soc. 2010, 132, 11864. DOI: 10.1021/ja104332t
[4] Sugimoto, T. et al. Nature 2007, 446, 64. doi:10.1038/nature05530

  • 関連リンク

見よ、核の周りを回る電子軌道を捉えた世界初の画像を!(GIZMODO)

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. カルボン酸をホウ素に変換する新手法
  2. 波動-粒子二重性 Wave-Particle Duality: …
  3. オンライン座談会『ケムステスタッフで語ろうぜ』開幕!
  4. 中国へ行ってきました 西安・上海・北京編②
  5. TMSClを使ってチタンを再生!チタン触媒を用いたケトン合成
  6. だんだん柔らかくなるCOF!柔軟性の違いによる特性変化
  7. 普通じゃ満足できない元素マニアのあなたに:元素手帳2016
  8. (–)-Batrachotoxinin Aの短工程全合成

注目情報

ピックアップ記事

  1. 初歩から学ぶ無機化学
  2. なぜ電子が非局在化すると安定化するの?【化学者だって数学するっつーの!: 井戸型ポテンシャルと曲率】
  3. モヴァッサージ脱酸素化 Movassaghi Deoxigenation
  4. 製薬産業の最前線バイオベンチャーを訪ねてみよう! ?シリコンバレーバイオ合宿?
  5. ウルマンエーテル合成 Ullmann Ether Synthesis
  6. クラプコ脱炭酸 Krapcho Decarboxylation
  7. 中学入試における化学を調べてみた 2013
  8. グルコース (glucose)
  9. 化学の力で複雑なタンパク質メチル化反応を制御する
  10. 研究者/研究力

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年9月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

ミトコンドリア内タンパク質を分解する標的タンパク質分解技術「mitoTPD」の開発

第 631 回のスポットライトリサーチは、東北大学大学院 生命科学研究科 修士課程2…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP